14 research outputs found

    In Vitro–expanded Antigen-specific Regulatory T Cells Suppress Autoimmune Diabetes

    Get PDF
    The low number of CD4+ CD25+ regulatory T cells (Tregs), their anergic phenotype, and diverse antigen specificity present major challenges to harnessing this potent tolerogenic population to treat autoimmunity and transplant rejection. In this study, we describe a robust method to expand antigen-specific Tregs from autoimmune-prone nonobese diabetic mice. Purified CD4+ CD25+ Tregs were expanded up to 200-fold in less than 2 wk in vitro using a combination of anti-CD3, anti-CD28, and interleukin 2. The expanded Tregs express a classical cell surface phenotype and function both in vitro and in vivo to suppress effector T cell functions. Most significantly, small numbers of antigen-specific Tregs can reverse diabetes after disease onset, suggesting a novel approach to cellular immunotherapy for autoimmunity

    Structural Analysis of CTLA-4 Function In Vivo

    No full text

    Cutting Edge: Vasostatin-1–Derived Peptide ChgA29–42 Is an Antigenic Epitope of Diabetogenic BDC2.5 T Cells in Nonobese Diabetic Mice

    No full text
    Mechanistic and therapeutic insights in autoimmune diabetes would benefit from a more complete identification of relevant autoantigens. BDC2.5 TCR transgenic NOD mice express transgenes for TCR Vα1 and Vβ4 chains from the highly diabetogenic BDC2.5 CD4(+) T cell clone, which recognizes pancreatic β cell membrane Ags presented by NOD I-A(g7) MHC class II molecules. The antigenic epitope of BDC2.5 TCR is absent in β cells that do not express chromogranin A (ChgA) protein. However, characterization of the BDC2.5 epitope in ChgA has given inconclusive results. We have now identified a ChgA29-42 peptide within vasostatin-1, an N-terminal natural derivative of ChgA as the BDC2.5 TCR epitope. Having the necessary motif for binding to I-A(g7), it activates BDC2.5 T cells and induces an IFN-γ response. More importantly, adoptive transfer of naive BDC2.5 splenocytes activated with ChgA29-42 peptide transferred diabetes into NOD/SCID mice
    corecore