58 research outputs found

    Intrahepatic persistent fetal right umbilical vein: a retrospective study

    Get PDF
    Introduction: To appraise the incidence and value of intrahepatic persistent right umbilical vein (PRUV). Methods: This was a single-center study. Records of all women with a prenatal diagnosis of intrahepatic PRUV were reviewed. The inclusion criteria were women with gestational age greater than 13 weeks of gestation. Exclusion criteria were fetuses with situs abnormalities, due to the hepatic venous ambiguity, and extrahepatic PRUV. The primary outcome was the incidence of intrahepatic PRUV in our cohort. The secondary outcomes were associated malformations. Results: 219/57,079 cases (0.38%) of intrahepatic PRUV were recorded. The mean gestational age at diagnosis was 21.8 ± 2.9 weeks of gestations. PRUV was isolated in the 76.7%, while in 23.3% was associated with other major or minor abnormalities. The most common associated abnormalities were cardiovascular abnormalities (8.7%), followed by genitourinary abnormalities (6.4%), skeletal abnormalities (4.6%), and central nervous system abnormalities (4.1%). Within the cardiovascular abnormalities, the most common one was ventricular septal defect (six cases). Conclusion: In most cases PRUV is an isolated finding. Associated minor or major malformations are presented in the 23.3% of the cases, so this finding should prompt detailed prenatal assessment of the fetus, with particular regard to cardiovascular system

    Pericranial and scalp rotation flaps for occipitocervical hardware exposure with CSF leak in rheumatoid arthritis patient: A case report and review of the literature

    Get PDF
    Background: There are several etiologies of craniocervical junction instability (CCJI); trauma, rheumatoid arthritis (RA), infections, tumors, congenital deformity, and degenerative processes. These conditions often require surgery and craniocervical fixation. In rare cases, breakdown of such CCJI fusions (i.e., due to cerebrospinal fluid [CSF] leaks, infection, and wound necrosis) may warrant the utilization of occipital periosteal rescue flaps and scalp rotation flaps to achieve adequate closure. Case Description: A 33-year-old female with RA, cranial settling, and high cervical cord compression underwent an occipitocervical instrumented C0-C3/C4 fusion. Two months later, revision surgery was required due to articular screws pull out, CSF leakage, and infection. At the second surgery, the patient required screws removal, the application of laminar clamps, and sealing the leak with fibrin glue. However, the CSF leak persisted, and the skin edges necrosed leaving the hardware exposed. The third surgery was performed in conjunction with a plastic surgeon. It included operative debridement and covering the instrumentation with a pericranial flap. The resulting cutaneous defect was then additionally reconstructed with a scalp rotation flap. Postoperatively, the patient adequately recovered without sequelae. Conclusion: A 33-year-old female undergoing an occipitocervical fusion developed a postoperative persistent CSF leak, infection, and wound necrosis. This complication warranted the assistance of plastic surgery to attain closure. This required an occipital periosteal rescue flap with an added scalp rotation flap

    Conservative treatment in Scheuermann's kyphosis: comparison between lateral curve and variation of the vertebral geometry

    Get PDF
    Abstract BACKGROUND: Conservative treatment in the Scheuermann's kyphosis obtain, during skeletal growth, remodelling of the deformed vertebras. In a previous paper on Scheuermann's kyphosis, we have studied the geometry variations of all vertebrae included in the curve, before and after the treatment. The purpose of this study was to confirm the effectiveness of conservative treatment in Scheuermann's kyphosis and was to evaluate and compare the variation of the vertebral geometry with the curve trend in Cobb degrees, before and after conservative treatment. METHODS: From a consecutive series of patients, we selected 90 patients with thoracic Scheuermann's kyphosis, treated using anti-gravity brace: 59 male, 31 female. The mean age at the beginning of the treatment was 14 years. Radiographical measurements were performed on radiographs from a lateral projection, at the beginning (t1) and at the end of the treatment (t5). Vertebral geometry modifications at t1 and t5 were analysed according to the following parameters and evaluated by three independent observers: Anterior wedging angle (ALFA) of the apex vertebra and Posterior wall inclination (APOS) of the limiting lower vertebra. The curve was measured in Cobb degrees. RESULTS: The results from our study showed that of the 90 patients with a thoracic curve mean value of Cobb degrees was 57.8\u2009\ub1\u20096.0 SD at t1 and 41.3\u2009\ub1\u20095.6 SD at t5. The differences between t1(angle at baseline) and t5 (end of treatment) were calculated for Cobb, ALFA and APOS angle and were respectively -16.4\u2009\ub1\u20094.5, -6.4\u2009\ub1\u20091.4 and -2.7\u2009\ub1\u20091.2; tested with paired t-test were significative (p\u2009<\u20090.01). The results of the regression analysis to test the relationship between the three measures for the kyphosis (Cobb degree, ALFA and APOS) showed that the best association was between Cobb t5 and ALFA t5 (p\u2009<\u20090.01) and Cobb t1 and APOS t1 (p\u2009<\u20090.01). No significative association was found between the difference between ALFA and APOS. CONCLUSION: We sustain that using new parameters to study vertebral remodelling allows us to reach a better comprehension of Scheuermann spine response to anti-gravity brace treatment. Furthermore, the evaluation of the ALFA angle of the apex vertebra confirms to be more reliable than Cobb's angle because it cannot be affected by the radiological position

    Segond fracture with anterior cruciate ligament tear in an adolescent

    Get PDF
    The authors report a case of acute knee injury in a 14-year-old teenager. The X-ray showed a so-called Segond’s fracture: a small avulsed bone fragment, elliptical in shape, lying immediately below the external tibial plateau, a few millimeters from the lateral tibial cortex. The fracture site was in the portion of the tibial condyle which is linked to the middle third of the lateral capsule by meniscal tibial fibers. Clinical examination under anesthesia and subsequent arthroscopy revealed a total intrasubstance ACL (anterior cruciate ligament) tear close to the proximal insertion. The authors confirm Segond’s report of a possible association of this avulsion fracture with ACL injuries, even in adolescence

    Expanded carrier screening: A current perspective

    Get PDF
    Prenatal carrier screening has expanded to include a large number of genes offered to all couples considering pregnancy or with an ongoing pregnancy. Expanded carrier screening refers to identification of carriers of single-gene disorders outside of traditional screening guidelines. Expanded carrier screening panels include numerous autosomal recessive and X-linked genetic conditions, including those with a very low carrier frequency, as well as those with mild or incompletely penetrant phenotype. Therefore, the clinical utility of these panels is still subject of debate. Priority should be given to carrier screening panels that include a comprehensive set of severe childhood-onset disorders. Psychosocial support and genetic couseling should be available prior to screening and for the return of positive results. Systems are needed to reduce the risk of misinterpreting results. Finally, attention should be paid on the impact of expanded carrier screening on health care organizations and burden of cost

    Brace technology thematic series: the progressive action short brace (PASB)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Progressive Action Short Brace (PASB) is a custom-made thoraco-lumbar-sacral orthosis (TLSO), devised in 1976 by Dr. Lorenzo Aulisa (Institute of Orthopedics at the Catholic University of the Sacred Heart, Rome, Italy). The PASB was designed to overcome the limits imposed by the trunk anatomy. Indeed, the particular geometry of the brace is able to generate internal forces that modify the elastic reaction of the spine. The PASB is indicated for the conservative treatment of lumbar and thoraco-lumbar scoliosis. The aim of this article is to explain the biomechanic principles of the PASB and the rationale underlying its design. Recently published studies reporting the results of PASB-based treatment of adolescent scoliotic patients are also discussed.</p> <p>Description and principles</p> <p>On the coronal plane, the upper margin of the PASB, at the side of the curve concavity, prevents the homolateral bending of the scoliotic curve. The opposite upper margin ends just beneath the apical vertebra. The principle underlying such configuration is that the deflection of the inferior tract of a curved elastic structure, fixed at the bottom end, causes straightening of its upper tract. Therefore, whenever the patient bends towards the convexity of the scoliotic curve, the spine is deflected. On the sagittal plane, the inferior margins of the PASB reach the pelvitrochanteric region, in order to stabilize the brace on the pelvis. The transverse section of the brace above the pelvic grip consists of asymmetrical ellipses. This allows the spine to rotate towards the concave side only, leading to the continuous generation of derotating moments. On the sagittal plane, the brace is contoured so as to reduce the lumbar lordosis. The PASB, by allowing only those movements counteracting the progression of the curve, is able to produce corrective forces that are not dissipated. Therefore, the brace is based on the principle that a constrained spine dynamics can achieve the correction of a curve by inverting the abnormal load distribution during skeletal growth.</p> <p>Results</p> <p>Since its introduction in 1976, several studies have been published supporting the validity of the biomechanical principles to which the brace is inspired. In this article, we present the outcome of a case series comprising 110 patients with lumbar and thoraco-lumbar curves treated with PASB brace. Antero-posterior radiographs were used to estimate the curve magnitude (C<sub>M</sub>) and the torsion of the apical vertebra (T<sub>A</sub>) at 5 time points: beginning of treatment (t<sub>1</sub>), one year after the beginning of treatment (t<sub>2</sub>), intermediate time between t<sub>1 </sub>and t<sub>4 </sub>(t<sub>3</sub>), end of weaning (t<sub>4</sub>), 2-year minimum follow-up from t<sub>4 </sub>(t<sub>5</sub>). The average C<sub>M </sub>value was 29.3°Cobb at t<sub>1 </sub>and 13.0°Cobb at t<sub>5</sub>. T<sub>A </sub>was 15.8° Perdroille at t<sub>1 </sub>and 5.0° Perdriolle at t<sub>5</sub>. These results support the efficacy of the PASB in the management of scoliotic patients with lumbar and thoraco-lumbar curves.</p> <p>Conclusion</p> <p>The results obtained in patients treated with the PASB confirm the validity of our original biomechanical approach. The efficacy of the PASB derives not only from its unique biomechanical features but also from the simplicity of its design, construction and management.</p
    corecore