81 research outputs found

    Ancestral TSH mechanism signals summer in a photoperiodic mammal

    Get PDF
    SummaryIn mammals, day-length-sensitive (photoperiodic) seasonal breeding cycles depend on the pineal hormone melatonin, which modulates secretion of reproductive hormones by the anterior pituitary gland [1]. It is thought that melatonin acts in the hypothalamus to control reproduction through the release of neurosecretory signals into the pituitary portal blood supply, where they act on pituitary endocrine cells [2]. Contrastingly, we show here that during the reproductive response of Soay sheep exposed to summer day lengths, the reverse applies: Melatonin acts directly on anterior-pituitary cells, and these then relay the photoperiodic message back into the hypothalamus to control neuroendocrine output. The switch to long days causes melatonin-responsive cells in the pars tuberalis (PT) of the anterior pituitary to increase production of thyrotrophin (TSH). This acts locally on TSH-receptor-expressing cells in the adjacent mediobasal hypothalamus, leading to increased expression of type II thyroid hormone deiodinase (DIO2). DIO2 initiates the summer response by increasing hypothalamic tri-iodothyronine (T3) levels. These data and recent findings in quail [3] indicate that the TSH-expressing cells of the PT play an ancestral role in seasonal reproductive control in vertebrates. In mammals this provides the missing link between the pineal melatonin signal and thyroid-dependent seasonal biology

    Effects of muscarinic receptor stimulation on Ca2+ transient, cAMP production and pacemaker frequency of rabbit sinoatrial node cells

    Get PDF
    We investigated the contribution of the intracellular calcium (Cai2+) transient to acetylcholine (ACh)-mediated reduction of pacemaker frequency and cAMP content in rabbit sinoatrial nodal (SAN) cells. Action potentials (whole cell perforated patch clamp) and Cai2+ transients (Indo-1 fluorescence) were recorded from single isolated rabbit SAN cells, whereas intracellular cAMP content was measured in SAN cell suspensions using a cAMP assay (LANCEÂź). Our data show that the Cai2+ transient, like the hyperpolarization-activated “funny current” (If) and the ACh-sensitive potassium current (IK,ACh), is an important determinant of ACh-mediated pacemaker slowing. When If and IK,ACh were both inhibited, by cesium (2 mM) and tertiapin (100 nM), respectively, 1 ΌM ACh was still able to reduce pacemaker frequency by 72%. In these If and IK,ACh-inhibited SAN cells, good correlations were found between the ACh-mediated change in interbeat interval and the ACh-mediated change in Cai2+ transient decay (r2 = 0.98) and slow diastolic Cai2+ rise (r2 = 0.73). Inhibition of the Cai2+ transient by ryanodine (3 ΌM) or BAPTA-AM (5 ΌM) facilitated ACh-mediated pacemaker slowing. Furthermore, ACh depressed the Cai2+ transient and reduced the sarcoplasmic reticulum (SR) Ca2+ content, all in a concentration-dependent fashion. At 1 ΌM ACh, the spontaneous activity and Cai2+ transient were abolished, but completely recovered when cAMP production was stimulated by forskolin (10 ΌM) and IK,ACh was inhibited by tertiapin (100 nM). Also, inhibition of the Cai2+ transient by ryanodine (3 ΌM) or BAPTA-AM (25 ΌM) exaggerated the ACh-mediated inhibition of cAMP content, indicating that Cai2+ affects cAMP production in SAN cells. In conclusion, muscarinic receptor stimulation inhibits the Cai2+ transient via a cAMP-dependent signaling pathway. Inhibition of the Cai2+ transient contributes to pacemaker slowing and inhibits Cai2+-stimulated cAMP production. Thus, we provide functional evidence for the contribution of the Cai2+ transient to ACh-induced inhibition of pacemaker activity and cAMP content in rabbit SAN cells

    La mélatonine dans le systÚme circadien

    No full text
    Chez les MammifĂšres l'horloge biologique circadienne principale est localisĂ©e dans les noyaux suprachiasmatiques de l'hypothalamus. Cette horloge, dont la pĂ©riode est lĂ©gĂšrement diffĂ©rente de 24 heures, est synchronisĂ©e avec le temps astronomique, essentiellement par le cycle jour/nuit. Pour cette remise Ă  l'heure, les diffĂ©rents synchroniseurs agissent sur la boucle molĂ©culaire principale Ă  la base des oscillations circadiennes et plus particuliĂšrement sur les gĂšnes Per1 et Per2 . Une fois construites et synchronisĂ©es, les oscillations circadiennes sont distribuĂ©es Ă  tout l'organisme par des signaux effĂ©rents de l'horloge, et l'interaction complexe entre les signaux nerveux, endocrines et/ou comportementaux permet l'organisation temporelle des fonctions. La mĂ©latonine est un important signal hormonal effĂ©rent de l'horloge qui dĂ©finit la "nuit biologique". Elle est capable d'imposer un rythme circadien aux structures qui expriment des rĂ©cepteurs de la mĂ©latonine, et joue un rĂŽle majeur dans l'homĂ©ostasie temporelle. La prĂ©sence de rĂ©cepteurs de la mĂ©latonine dans les noyaux suprachiasmatiques indique que l'hormone rĂ©tro-agit sur l'horloge elle-mĂȘme et donc, que la mĂ©latonine exogĂšne a la capacitĂ© d'agir sur le systĂšme circadien, ce qui a Ă©tĂ© dĂ©montrĂ© expĂ©rimentalement (effet chronobiotique). La mĂ©latonine peut donc agir comme un synchroniseur de l'horloge. Par contre, et de façon surprenante car contraire Ă  celui des autres synchroniseurs, cet effet chronobiotique de la mĂ©latonine ne passe pas par une action directe sur les gĂšnes Per1 et/ou Per2, mais sur Rev-erb α, un gĂšne impliquĂ© dans la boucle modulatrice de la machinerie molĂ©culaire de l'horloge
    • 

    corecore