15,800 research outputs found

    Extended corresponding-states behavior for particles with variable range attractions

    Full text link
    We propose an extension of the law of corresponding states that can be applied to systems - such as colloidal suspensions - that have widely different ranges of attractive interactions. We argue that, for such systems, the ``reduced'' second virial coefficient is a convenient parameter to quantify the effective range of attraction. This procedure allows us to give a simple definition of the effective range of attraction of potentials with different functional forms. The advantage of the present approach is that it allows us to estimate the relative location of the liquid-vapor and solid-fluid coexistence curves exclusively on basis of the knowledge of the pair-potential.Comment: REVTeX, 5 pages, 2 figure

    Entanglement swapping in a Franson interferometer setup

    Full text link
    We propose a simple scheme to swap the non local correlations, characteristic of a Franson interferometric setup, between pairs of frequency entangled photons emitted by distinct non linear crystals in a parametric down conversion process. Our scheme consists of two distinct sources of frequency entangled photons. One photon of each pair is sent to a separate Mach - Zender interferometer while the other photons of the pairs are mixed by a beam splitter and then detected in a Ou - Mandel interferometer. For suitably postselected joint measuremetns, the photons sent at the Mach -Zender show a coincidence photocount statistics which depends non locally on the settings of the two interferometers.Comment: Published on the special issue of JMO in honour of the 60th birthday of Sir Peter Knight, FRS. Submitted to JMO on 10 February 2007. While the present manuscript was processed an independent experimental implementation of the same scheme discussed in our manuscript has been made bythe Geneva GAP as described in arXiv:0704.0758v

    Entanglement enhanced information transmission over a quantum channel with correlated noise

    Get PDF
    We show that entanglement is a useful resource to enhance the mutual information of the depolarizing channel when the noise on consecutive uses of the channel has some partial correlations. We obtain a threshold in the degree of memory, depending on the shrinking factor of the channel, above which a higher amount of classical information is transmitted with entangled signals

    Entanglement entropy in a periodically driven quantum Ising chain

    Get PDF
    We numerically study the dynamics of entanglement entropy, induced by an oscillating time periodic driving of the transverse field, h(t), of a one-dimensional quantum Ising chain. We consider several realizations of h(t), and we find a number of results in analogy with entanglement entropy dynamics induced by a sudden quantum quench. After short-time relaxation, the dynamics of entanglement entropy synchronises with h(t), displaying an oscillatory behaviour at the frequency of the driving. Synchronisation in the dynamics of entanglement entropy, is spoiled by the appearance of quasi-revivals which fade out in the thermodynamic limit, and which we interpret using a quasi-particle picture adapted to periodic drivings. Taking the time-average of the entanglement entropy in the synchronised regime, we find that it obeys a volume law scaling with the subsystem's size. Such result is reminiscent of a thermal state or of a Generalised Gibbs ensemble of a quenched Ising chain, although the system does not heat up towards infinite temperature as a consequence of the integrability of the model.Comment: 6 pages, 3 figure

    Thermoelectric properties of junctions between metal and strongly correlated semiconductor

    Full text link
    We propose a junction of metal and rare-earth compound semiconductor as the basis for a possible efficient low-temperature thermoelectric device. If an overlayer of rare earth atoms differing from the bulk is placed at the interface, very high values of the figure of merit ZT can be reached at low temperature. This is due to sharp variation of the transmission coefficient of carriers across the junction at a narrow energy range, which is intrinsically linked to the localized character of the overlayer f-orbital.Comment: RevTeX 3.0, 4 pages, 3 postscript figures. To be published in Applied Physics Letter

    Composite quantum collision models

    Get PDF
    A collision model (CM) is a framework to describe open quantum dynamics. In its {\it memoryless} version, it models the reservoir R\mathcal R as consisting of a large collection of elementary ancillas: the dynamics of the open system S\mathcal{S} results from successive "collisions" of S\mathcal{S} with the ancillas of R\mathcal R. Here, we present a general formulation of memoryless {\it composite} CMs, where S\mathcal S is partitioned into the very open system under study SS coupled to one or more auxiliary systems {Si}\{S_i\}. Their composite dynamics occurs through internal SS-{Si}\{S_i\} collisions interspersed with external ones involving {Si}\{S_i\} and the reservoir R\mathcal R. We show that important known instances of quantum {\it non-Markovian} dynamics of SS -- such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise -- can be mapped on to such {\it memoryless} composite CMs.Comment: 12 pages, 4 figure

    A note on two notions of compliance

    Get PDF
    We establish a relation between two models of contracts: binary session types, and a model based on event structures and game-theoretic notions. In particular, we show that compliance in session types corresponds to the existence of certain winning strategies in game-based contracts.Comment: In Proceedings ICE 2014, arXiv:1410.701

    Mutual Absolute Continuity of Multiple Priors

    Get PDF
    This note provides a behavioral characterization of mutually absolutely continuous multiple priors.Mutual absolute continuity, Multiple priors
    • …
    corecore