40 research outputs found

    The silicon microstrip detectors of the PAMELA experiment: simulation and test results

    Get PDF
    Abstract The PAMELA detector will fly at the beginning of 2004 on board the Russian satellite Resurs–DK for a 3-year mission designed to study mainly antiparticles in cosmic rays. The core of the apparatus is a magnetic spectrometer in which silicon microstrip detectors are employed. A dedicated simulation study, tuned on beam test data, is presented: it allows to determine the best position finding algorithm for different incidence angles

    The magnetic spectrometer of the PAMELA satellite experiment

    Get PDF
    In this paper, we describe in detail the design and the construction of the magnetic spectrometer of the PAMELA experiment, that will be launched during 2003 to do a precise measurement of the energy spectra of the antimatter components in cosmic rays. This paper will mainly focus on the detailed description of the tracking system and on the solutions adopted to deal with the technical challenges that are required to build a very precise detector to be used in the hostile space environment

    The PAMELA silicon tracker

    Get PDF
    Abstract The silicon tracker of the PAMELA apparatus has been assembled and it is ready to fly on-board the Russian satellite Resurs DK for a 3-year mission. The experiment will study, mainly, spectra of particles and antiparticles in cosmic rays. The magnetic spectrometer's primary goal is to precisely measure momenta of charged particles, whose trajectories have been bent by a permanent magnet. The detector is composed of 6 planes of double-sided silicon microstrip detectors, inserted between adjacent modules of a permanent magnet which produces an almost uniform magnetic field inside a rectangular cavity that particles cross. The spatial resolution of the detectors is about 3 ÎŒm for the bending coordinate. The development of such detectors required a complex manufacturing procedure in order to preserve the physical performance in a device suitable for a space mission. In the construction phase data originating from both beam tests and simulation helped to check the detector's characteristics and to optimize the achievable spatial resolution. The development and the final assembling of these detectors are described in this paper

    Three-dimensional muon imaging of cavities inside the Temperino mine (Italy)

    Get PDF
    : Muon radiography (muography) is an imaging technique based on atmospheric muon absorption in matter that allows to obtain two and three-dimensional images of internal details of hidden objects or structures. The technique relies on atmospheric muon flux measurements performed around and underneath the object under examination. It is a non-invasive and passive technique and thus can be thought of as a valid alternative to common prospecting techniques used in archaeological, geological and civil security fields. This paper describes muon radiography measurements, in the context of archaeological and geological studies carried out at the Temperino mine (LI, Tuscany, Italy), for the search and three-dimensional visualisation of cavities. This mine has been exploited since Etruscan times until recently (1973), and is now an active tourist attraction with public access to the tunnels. Apart from the archaeological interest, the importance of mapping the cavities within this mine lies in identifying the areas where the extraction ores were found and also in the safety issues arising from the tourist presence inside the mine. The three-dimensional imaging is achieved with two different algorithms: one involving a triangulation of two or more measurements at different locations; the other, an innovative technique used here for the first time, is based on the back-projections of reconstructed muon tracks. The latter requires only a single muographic data tacking and is to be preferred in applications where more than one site location can be difficult to access. Finally the quality of the three-dimensional muographic imaging was evaluated by comparing the results with the laser scan profiles obtained for some known cavities within the Temperino mine

    Radiation damage of electronic components in space environment

    Get PDF
    The PAMELA apparatus is dedicated to study cosmic rays on board of a satellite mission scheduled to start at the beginning of 2004. All the electronics components of such a mission have to be chosen carefully, because no replacement is possible after launch. Irradiation tests have been performed in order to study effects of highly ionizing particles on chips and to evaluate thresholds for Single Event Upset and Latch-up. The first effect, observed in digital components, is a radiation-induced change of state in a memory cell and gives rise to loss of the stored information. The second one, present also in analog components, happens when a parasitic conduction channel opens through the chip: this can fuse the component unless a protection circuit limits the current flow. Estimates of on-orbit fluxes and results of dedicated beam tests are reported

    The LHCf experiment at LHC

    Get PDF
    The LHCf experiment will be installed in 2007 on the LHC collider in the forward direction at ±140m from the ATLAS interaction point. The purpose of LHCf is to precisely measure the pion production cross section near zero degrees through the measurement of the photons produced in neutral pion decay. This measurement is crucial for the simulation of the showers induced in the atmosphere by very high energy cosmic rays; the 14 TeV energy available in the center of mass frame corresponds in fact to an equivalent energy of 1017 eV in the laboratory system. The paper focus on the proposed experiment and on the physics results that we expect from it

    The Impact of Crystal Light Yield Non-Proportionality on a Typical Calorimetric Space Experiment: Beam Test Measurements and Monte Carlo Simulations

    Get PDF
    Calorimetric space experiments were employed for the direct measurements of cosmic-ray spectra above the TeV region. According to several theoretical models and recent measurements, relevant features in both electron and nucleus fluxes are expected. Unfortunately, sizable disagreements among the current results of different space calorimeters exist. In order to improve the accuracy of future experiments, it is fundamental to understand the reasons of these discrepancies, especially since they are not compatible with the quoted experimental errors. A few articles of different collaborations suggest that a systematic error of a few percentage points related to the energy-scale calibration could explain these differences. In this work, we analyze the impact of the nonproportionality of the light yield of scintillating crystals on the energy scale of typical calorimeters. Space calorimeters are usually calibrated by employing minimal ionizing particles (MIPs), e.g., nonshowering proton or helium nuclei, which feature different ionization density distributions with respect to particles included in showers. By using the experimental data obtained by the CaloCube collaboration and a minimalist model of the light yield as a function of the ionization density, several scintillating crystals (BGO, CsI(Tl), LYSO, YAP, YAG and BaF2) are characterized. Then, the response of a few crystals is implemented inside the Monte Carlo simulation of a space calorimeter to check the energy deposited by electromagnetic and hadronic showers. The results of this work show that the energy scale obtained by MIP calibration could be affected by sizable systematic errors if the nonproportionality of scintillation light is not properly taken into account

    Results from the LHCf experiment

    Get PDF
    LHCf is an experiment designed to study the very forward emission of neutral particles produced in collisions at the LHC. Its results can be used to calibrate the hadron interaction models of the Monte Carlo codes which allow the interpretation of energy spectrum and composition of high-energy cosmic rays as measured by air shower ground detectors. The experiment has already completed taking data in proton-proton collisions at √s = 900 GeV and at √s = 7TeV during 2009 and 2010. The detectors are now being upgraded and they will be installed again in the LHC tunnel for proton-ion collisions and for operation with protons at √s = 14TeV. In this paper results and comparisons with the predictions obtained from Monte Carlo simulations will be reported

    Time dependence of the helium flux measured by PAMELA

    Get PDF
    Precision measurements of the Z = 2 component in cosmic radiation provide crucial information about the origin and propagation of the second most abundant cosmic ray species in the Galaxy (9% of the total). These measurements, acquired with the PAMELA space experiment orbiting Earth, allow to study solar modulation in details. Helium modulation is compared to the modulation of protons to study possible dependencies on charge and mass. The time dependence of helium fluxes on a monthly basis measured by PAMELA has been studied for the period between July 2006 to January 2016 in the energy range from 800 MeV/n to ~ 20 GeV/n
    corecore