313 research outputs found

    Seasonal variation of platelets in a cohort of Italian blood donors: a preliminary report

    Get PDF
    Massimo Gallerani1*, Roberto Reverberi2, Raffaella Salmi1, Michael H Smolensky3 and Roberto Manfredini4 Author Affiliations 1 Internal Medicine, Azienda Ospedaliera-Universitaria, Ferrara, Italy 2 Immunohematological and Transfusional Service, Azienda Ospedaliera-Universitaria, Ferrara, Italy 3 Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA 4 Clinica Medica, Azienda Ospedaliera-Universitaria, Ferrara, ItalyBackground: Since available data are not univocal, the aim of this study was to explore the existence of a seasonal variation in platelet count. Methods: The study was based on the database of the Italian Association of Blood Volunteers (AVIS), section of Ferrara, Italy, 2001–2010. Hematological data (170,238 exams referring to 16,422 donors) were categorized into seasonal and monthly intervals, and conventional and chronobiological analyses were applied. Results: Platelets and plateletcrit were significantly higher in winter-autumn, with a main peak in December-February (average +3.4% and +4.6%, respectively, P <0.001 for both). Conclusions: Although seasonal variations have been reported for several acute cardiovascular diseases, it is extremely unlikely that such a slight increase in platelet count in winter alone may be considered as a risk factor.Biomedical [email protected]

    β-Glucan synthase induction in mushrooms grown on olive mill wastewaters

    Get PDF
    Beta-1-3-Glucan synthase activity and its induction by olive mill wastewaters (OMW) was studied in ten fungal strains (Auricularia auricula-judae, Lentinula edodes, Pleurotus eryngii, Stropharia aeruginosa, Agrocybe aegerita, P. pulmonarius, Armillaria mellea, P. ferulae, P. ostreatus, P. nebrodensis). A microtiter-based enzymatic assay on -1-3-glucan synthase activity was carried out on all mycelia growth both on the control medium and on OMW. Among the fungi assayed, L. edodes -1-3-glucan synthase was highly enhanced in OMW. The main components of OMW, i.e. phenols and lipids, were added separately to the control medium, to highlight the mechanism of L. edodes -1-3-glucan synthase induction. A Southern blot analysis and PCR with degenerated primers were carried out to detect the presence of fks1-like genes in these Basidiomycetes. The sequences obtained from the ten Basidiomycota were remarkably similar to fks1 from Filobasidiella neoformans. Spectrofluorimetric and RT-PCR analyses of -1-3-glucan synthase were performed on the mycelia of L. edodes. In this fungus, a strong stimulation of -1-3-glucan synthase mRNA and protein was recorded in the presence of OMW and phenol

    Lipid profile of Xylella fastidiosa Subsp. pauca associated with the olive quick decline syndrome

    Get PDF
    Lipids, components of the plasma and intracellular membranes as well as of droplets, provide different biological functions related to energy, carbon storage, and stress responses. Bacterial species display diverse membrane composition that changes in response to the different environmental conditions. During plant-pathogen interactions, lipids might have roles in several aspects such as recognition, signal transduction, and downstream responses. Among lipid entities, free fatty acids (FFAs) and their oxidized form, the oxylipins, represent an important class of signaling molecules in host-pathogen perception, especially related to virulence and defense. In bacteria, FFAs (e.g., diffusible signaling factors) and oxylipins have a crucial role in modulating motility, biofilm formation, and virulence. In this study, we explore by LC-TOF and LC-MS/MS the lipid composition of Xylella fastidiosa subsp. pauca strain De Donno in pure culture; some specific lipids (e.g., ornithine lipids and the oxylipin 7,10-diHOME), characteristic of other pathogenic bacteria, were revealed. Nicotiana tabacum was used for testing the ability of this pathogen in producing such lipids in the host. Different lipid compounds present a clear distribution pattern within the infected plant tissues compared to the uninfected ones

    Nanopore Sequencing and Bioinformatics for Rapidly Identifying Cultural Heritage Spoilage Microorganisms

    Get PDF
    Microbiological methodologies allow understanding the causes that lead to the development of a certain microbial community colonizing an artistic surface, to characterize its composition and describe its role in the deterioration of the constituent materials. Metagenomics allows identifying microbial communities directly in their natural environments, bypassing the need for isolation and cultivation of individual species, thus providing a more comprehensive picture of the biodiversity present on a surface compared with standard cultivation methods. Furthermore, molecular analyses require small amounts of material, favoring the preservation of the artistic surface during sampling. Here, we verified the suitability of a protocol consisting in DNA extraction with micro-invasive sampling, using adhesive tape, PCR amplification with universal primers [bacteria (16S), fungi (ITS), and Viridiplantae (18S)], and amplicon sequencing by Oxford Nanopore Technologies (ONT) in the hypogeum of Basilica di San Nicola in Carcere Church (Rome, Italy). Sequence data were analyzed with a bioinformatic pipeline customized for pinpointing cultural heritage spoiling organisms, named "AmpLIcon SequencIng Analysis" (ALISIA). These data were integrated with traditional microbiology techniques that allowed the isolation of cultivable bacteria; three species were also characterized through their capability of biofilm formation and antibiotic resistance. Further, Fourier-transform infrared spectroscopy (FTIR) spectroscopy was performed to characterize the main products present on the masonry surface providing indications on the type of decay present. This novel biological workflow represents a powerful opportunity to investigate the microbial colonization of artistic surfaces aimed at implementing preservation strategies of cultural heritage from bio-spoilage

    Open field study of some Zea mays hybrids, lipid compounds and fumonisins accumulation

    Get PDF
    Lipid molecules are increasingly recognized as signals exchanged by organisms interacting in pathogenic and/or symbiotic ways. Some classes of lipids actively determine the fate of the interactions. Host cuticle/cell wall/membrane components such as sphingolipids and oxylipins may contribute to determining the fate of host–pathogen interactions. In the present field study, we considered the relationship between specific sphingolipids and oxylipins of different hybrids of Zea mays and fumonisin by F. verticillioides, sampling ears at different growth stages from early dough to fully ripe. The amount of total and free fumonisin differed significantly between hybrids and increased significantly with maize ripening. Oxylipins and phytoceramides changed significantly within the hybrids and decreased with kernel maturation, starting from physiological maturity. Although the correlation between fumonisin accumulation and plant lipid profile is certain, the data collected so far cannot define a cause-effect relationship but open up new perspectives. Therefore, the question—“Does fumonisin alter plant lipidome or does plant lipidome modulate fumonisin accumulation?”—is still open

    Early detection of Aspergillus carbonarius and A. niger on table grapes: a tool for quality improvement

    Get PDF
    Aspergillus carbonarius and A. niger aggregate are the main fungal contaminants of table grapes. Besides their ability to cause black rot, they can produce ochratoxin A (OTA), a mycotoxin that has attracted increasing attention worldwide. The objective of this work was to set up a simple and rapid molecular method for the early detection of both fungi in table grapes before fungal development becomes evident. Polymerase chain reaction (PCR)-based assays were developed by designing species-specific primers based on the polyketide synthases (PKSS) sequences of A. carbonarius and A. niger that have recently been demonstrated to be involved in OTA biosynthesis. Three table grape varieties (Red globe, Crimson seedless, and Italia) were inoculated with A. carbonarius and A. niger aggregate strains producing OTA. The extracted DNA from control (non-inoculated) and inoculated grapes was amplified by PCR using ACPKS2F-ACPKS2R for A. carbonarius and ANPKS5-ANPKS6 for A. niger aggregate. Both primers allowed a clear detection, even in symptomless samples. PCR-based methods are considered to be a good alternative to traditional diagnostic means for the early detection of fungi in complex matrix for their high specificity and sensitivity. The results obtained could be useful for the definition of a 'quality label' for tested grapes to improve the safety measures taken to guarantee the production of fresh table grapes

    The Neolithic site “La Marmotta”. DNA metabarcoding to identify the microbial deterioration of waterlogged archeological wood

    Get PDF
    Introduction: The evaluation of biological degradation of waterlogged archeological wood is crucial to choose the conservative and protective treatments to be applied to the wooden material. The waterlogged environmental conditions are characterized by oxygen scarcity, only allowing the growth of adapted microbes capable to degrade the organic wooden material, mainly erosion bacteria and softrot fungi. In this work, we characterized and evaluated the biodegradation state and the microbial communities of wooden fragments preserved in storage tanks. These were preserved by waterlogging within the Neolithic village “La Marmotta,” currently found under the Bracciano Lake (Lazio, Italy). Methods: The waterlogged wood samples were first identified taxonomically with an optical microscope, also allowing an evaluation of their preservation state. The microbial community was then evaluated through the sequencing of Internal Transcribed Spacer sequences for fungi and 16S for bacteria with the Oxford Nanopore Technologies (ONT) MinION platform. Results: The identified microbial community appears to be consistent with the waterlogged samples, as many bacteria attributable to the erosion of wood and ligninolytic fungi have been sequenced. Discussion: The reported results highlight the first use of targeted metabarcoding by ONT applied to study the biodeterioration of waterlogged archeological wood

    Menadione-induced oxidative stress re-shapes the oxylipin profile of Aspergillus flavus and its lifestyle

    Get PDF
    Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies

    The effect of mushroom culture filtrates on the inhibition of mycotoxins produced by Aspergillus flavus and Aspergillus carbonarius

    Get PDF
    Two of the mycotoxins of greatest agroeconomic significance are aflatoxin B-1 (AFB(1)), and ochratoxin A (OTA). It has been reported that extracts from some wood-decaying mushrooms, such as Lentinula edodes and Trametes versicolor showed the ability to inhibit AFB(1) or OTA biosynthesis. Therefore, in our study, a wide screening of 42 isolates of different ligninolytic mushrooms was assayed for their ability to inhibit the synthesis of OTA in Aspergillus carbonarius and AFB(1) in Aspergillus flavus, in order to find a metabolite that can simultaneously inhibit both mycotoxins. The results showed that four isolates produce metabolites able to inhibit the synthesis of OTA, and 11 isolates produced metabolites that inhibited AFB(1) by &gt;50%. Two strains, the Trametes versicolor strain TV117 and the Schizophyllum commune strain S.C. Ailanto, produced metabolites able to significantly inhibit (&gt;90%) the synthesis of both mycotoxins. Preliminary results suggest that the mechanism of efficacy of the S. commune rough and semipurified polysaccharides could be analogous to that found previously for Tramesan(R), by enhancing the antioxidant response in the target fungal cells. The overall results indicate that S. commune's polysaccharide(s) could be a potential agent(s) in biological control and/or a useful component of the integrated strategies able to control mycotoxin synthesis

    How Agrobacterium rhizogenes triggers de novo root formation in a recalcitrant woody plant: an integrated histological, ultrastructural and molecular analysis

    Get PDF
    Adventitious rooting might be induced in recalcitrant woody genotypes by infection with Agrobacterium rhizogenes, and, in some cases, might also require exogenous auxin. The objective of the present study was to determine how agrobacteria trigger root formation in the stem of a recalcitrant woody microcutting, which cytological events result from the combined presence of infection and exogenous auxin, and which types of roots are induced by infection. Microcuttings of a recalcitrant walnut (Fuglans regia), infected or not with A. rhizogenes strain 1855, were cultured with either indolebutyric acid (IBA), IAA, or without exogenous hormones, to induce rhizogenesis. They were cytohistologically and ultrastructurally investigated at various times in culture. Southern blot and PCR analyses were performed to verify the frequency of transgenic, chimeric and bacterium-containing roots. The infection was sufficient per se to stimulate rhizogenesis. Rooting on the infected cuttings was enhanced by exogenous IBA, which accelerated and increased root meristemoid formation, in comparison with without hormone treatment. Meristemoids were organized both directly by the cambial cells and indirectly by the callus, and showed a pluricellular origin. Inter and intracellular bacteria were observed in the stem throughout the culture period (30 d). They were preferentially present in the vessels, and mainly in those showing polyphenol deposition. In the infected IAA-treated cultures, a high level of secondary xylem formation occurred instead of rhizogenesis. Nontransformed roots were preferentially produced by the infected cuttings treated with the auxins. Bacterium-containing and chimeric roots were produced by infected cuttings independently of the treatment. Thus, in a recalcitrant walnut, nontransformed root meristemoids are stimulated by combining infection and exogenous indolebutyric acid. Furthermore, the persistence of bacteria in the stem during the culture and the pluricellular origin of the meristemoids explain the presence of the bacterium-containing and chimeric roots
    • …
    corecore