278 research outputs found
Metabolism Tailors Macrophage Functions: One Size Does Not Fit All
It is well established that macrophages are critical for maintaining tissue integrity. It follows that impaired or exacerbated macrophage functions are often associated to disease. This is true in inflammatory related disorders, such as obesity, in which tissue macrophages become dysfunctional and display a persistent inflammatory activity. Conversely, in cancer, macrophages acquire an anti-inflammatory, immunosuppressive and pro-angiogenic function, sustaining, rather than constraining, tumor development and metastasis formation [1,2]. In all these pathological conditions macrophages receive signals from the surrounding tissues, engaging in a very complex plethora of functional states that support disease. Emerging research is now showing that in vitro polarized macrophages display different metabolic features, which are associated to their effector functions [3,4]. Yet, it is not completely clear if this holds true in vivo, and if specific metabolic traits impose a defined phenotype or vice versa, since the in vivo complexity of macrophage heterogeneity together with the impact that environmental signals can have on their phenotypic skewing would require a temporal and spatial definition that is strongly awaited. The present collection aims at providing an effective tool to contribute to the comprehensive understanding of the immunometabolic functions of macrophages and their communication with tissues in vivo in the context of two specific diseases: obesity and cancer
Glutamine synthetase inhibitors in cancer
Glutamine synthetase inhibitors in cance
MicroRNA-Mediated Metabolic Shaping of the Tumor Microenvironment
The metabolism of cancer cells is generally very different from what is found in normal counterparts. However, in a tumor mass, the continuous crosstalk and competition for nutrients and oxygen among different cells lead to metabolic alterations, not only in cancer cells, but also in the different stromal and immune cells of the tumor microenvironment (TME), which are highly relevant for tumor progression. MicroRNAs (miRs) are small non-coding RNAs that silence their mRNA targets post-transcriptionally and are involved in numerous physiological cell functions as well as in the adaptation to stress situations. Importantly, miRs can also be released via extracellular vesicles (EVs) and, consequently, take part in the bidirectional communication between tumor and surrounding cells under stress conditions. Certain miRs are abundantly expressed in stromal and immune cells where they can regulate various metabolic pathways by directly suppressing enzymes or transporters as well as by controlling important regulators (such as transcription factors) of metabolic processes. In this review, we discuss how miRs can induce metabolic reprogramming in stromal (fibroblasts and adipocytes) and immune (macrophages and T cells) cells and, in turn, how the biology of the different cells present in the TME is able to change. Finally, we debate the rebound of miR-dependent metabolic alterations on tumor progression and their implications for cancer management
Editorial: Macrophage metabolism and immune responses
Funded by grants from the Ministry of Science and Innovation
(MCI) co-financed with FEDER funds (RTI2018-096494-B-100
to JA and SAF2016-77433-R to RP-R). MM is supported by an
ERC Consolidator grant (acronym: ImmunoFit; #773208). RP-R
is a Ramon y Cajal Fellow from the MCI. We thank the MCI for
the Severo Ochoa Excellence accreditation (SEV-2016-0644)
Intracellular processing and activation of membrane type 1 matrix metalloprotease depends on its partitioning into lipid domains
The integral membrane type 1 matrix metalloprotease (MT1-MMP) is a pivotal protease in a number of physiological and pathological processes and confers both non-tumorigenic and tumorigenic cell lines with a specific growth advantage in a three-dimensional matrix. Here we show that, in a melanoma cell line, the majority (80%) of MT1-MMP is sorted to detergent-resistant membrane fractions; however, it is only the detergent-soluble fraction (20%) of MT1-MMP that undergoes intracellular processing to the mature form. Also, this processed MT1-MMP is the sole form responsible for ECM degradation in vitro. Finally, furin-dependent processing of MT1-MMP is shown to occur intracellularly after exit from the Golgi apparatus and prior to its arrival at the plasma membrane. It is thus proposed that the association of MT1-MMP with different membrane subdomains might be crucial in the control of its different activities: for instance in cell migration and invasion and other less defined ones such as MT1-MMP-dependent signaling pathways
Sunitinib but not VEGF blockade inhibits cancer stem cell endothelial differentiation
Different mechanisms of angiogenesis and vasculogenesis are involved in the development of the tumor vasculature. Among them, cancer stem cells are known to contribute to tumor vasculogenesis through their direct endothelial differentiation. Here, we investigated the effect of anti-angiogenic therapy on vasculogenesis of cancer stem cells derived from breast and renal carcinomas. We found that all the anti-angiogenic approaches impaired proliferation and survival of cancer stem cells once differentiated into endothelial cells in vitro and reduced murine angiogenesis in vivo. At variance, only VEGF-receptor inhibition using the non-specific tyrosine kinase inhibitor Sunitinib or the anti-VEGF-receptor 2 neutralizing antibody, but not VEGF blockade using Bevacizumab, impaired the process of endothelial differentiation in vitro, suggesting a VEGF-independent mechanism. In addition, tyrosine kinase inhibition by Sunitinib but not VEGF blockade using the soluble VEGF trap sFlk1 inhibited the cancer stem cell-induced vasculogenesis in vivo. Accordingly, Sunitinib but not Bevacizumab inhibited the induction of hypoxia-inducible factor pathway occurring during endothelial differentiation under hypoxia. The present results highlight a differential effect of VEGF-receptor blockade versus VEGF inhibition in tumor vascularization. VEGFR blockade inhibits the process of tumor vasculogenesis occurring during tumor hypoxia whereas the effect of VEGF inhibition appears restricted to differentiated endothelial cells
Pharmacologic or Genetic Targeting of Glutamine Synthetase Skews Macrophages toward an M1-like Phenotype and Inhibits Tumor Metastasis.
Glutamine-synthetase (GS), the glutamine-synthesizing enzyme from glutamate, controls important events, including the release of inflammatory mediators, mammalian target of rapamycin (mTOR) activation, and autophagy. However, its role in macrophages remains elusive. We report that pharmacologic inhibition of GS skews M2-polarized macrophages toward the M1-like phenotype, characterized by reduced intracellular glutamine and increased succinate with enhanced glucose flux through glycolysis, which could be partly related to HIF1α activation. As a result of these metabolic changes and HIF1α accumulation, GS-inhibited macrophages display an increased capacity to induce T cell recruitment, reduced T cell suppressive potential, and an impaired ability to foster endothelial cell branching or cancer cell motility. Genetic deletion of macrophagic GS in tumor-bearing mice promotes tumor vessel pruning, vascular normalization, accumulation of cytotoxic T cells, and metastasis inhibition. These data identify GS activity as mediator of the proangiogenic, immunosuppressive, and pro-metastatic function of M2-like macrophages and highlight the possibility of targeting this enzyme in the treatment of cancer metastasis
Visual Disturbances Spectrum in Pediatric Migraine
Migraine is a complex neurological disorder with partially unknown pathophysiological mechanisms. The prevalence in childhood ranges from 7.7% to 17.8%, thus representing the most frequent primary headache. In half of the cases, migraine is accompanied or preceded by various neurological disturbances, among which the visual aura is the best known. In literature, other conditions, such as Alice in Wonderland Syndrome and Visual Snow syndrome, are characterized by visual manifestations and are often associated with migraine. The aim of this narrative review is to describe the spectrum of visual disturbances in pediatric migraine and their pathophysiological mechanisms
Sleep disturbances and behavioral symptoms in pediatric Sotos syndrome
BackgroundSotos syndrome (SoS) is a rare overgrowth genetic disease caused by intragenic mutations or microdeletions of the NSD1 gene located on chromosome 5q35. SoS population might present cognitive impairment and a spectrum of behavioral characteristics, with a worse profile in patients with microdeletion. Although patients with SoS are known to have impaired sleep habits, very little data are available. The present study aimed to assess the prevalence of sleep disorders (SDs) in a pediatric cohort of patients with SoS and their correlation with neuropsychiatric profiles.MethodsWe included patients with a SoS diagnosis and age < 18 years; all patients underwent a comprehensive neuropsychological assessment, including evaluation of cognition, adaptive functions through the Adaptive Behavior Assessment System-Second Edition (ABAS-II), and behavioral problems using the Achenbach Child Behavior Checklist (CBCL) and Conners’ Parent Rating Scale-Revised (CPRS-R:L) questionnaire. To investigate the presence of SD parents, the Sleep Disturbance Scale for Children (SDSC) was completed.ResultsThirty-eight patients (M 61%, F 39%, mean age 11.1 ± 4.65 years) were included in the study. Although only two had a prior SD diagnosis, 71.1% (N = 27) exhibited pathological scores on SDSC. No statistically significant associations were found between positive SDSC results and genetic microdeletion, intellectual disability (ID), or other medical conditions/treatments. However, a positive correlation emerged between SDSC scores and Conners’ Global Index (p = 0.048) and Restless/Impulsive (p = 0.01) scores, CBCL externalizing (p = 0.02), internalizing (p = 0.01), and total scores (p = 0.05). Conversely, a negative linear relationship was observed between the SDSC score and the ABAS GAC and ABAS CAD scores (p = 0.025).ConclusionWe detected an SD in 71.1% of our sample, with a positive relation between SD and internalizing and externalizing symptom levels, especially hyperactivity and impulsivity. Our study demonstrated a high prevalence of SD in pediatric patients with SoS, highlighting that all patients should be screened for this problem, which has a great impact on the quality of life of patients and their families
Sleep disturbances and behavioral symptoms in pediatric Sotos syndrome
Background: Sotos syndrome (SoS) is a rare overgrowth genetic disease caused by intragenic mutations or microdeletions of the NSD1 gene located on chromosome 5q35. SoS population might present cognitive impairment and a spectrum of behavioral characteristics, with a worse profile in patients with microdeletion. Although patients with SoS are known to have impaired sleep habits, very little data are available. The present study aimed to assess the prevalence of sleep disorders (SDs) in a pediatric cohort of patients with SoS and their correlation with neuropsychiatric profiles. Methods: We included patients with a SoS diagnosis and age < 18 years; all patients underwent a comprehensive neuropsychological assessment, including evaluation of cognition, adaptive functions through the Adaptive Behavior Assessment System-Second Edition (ABAS-II), and behavioral problems using the Achenbach Child Behavior Checklist (CBCL) and Conners’ Parent Rating Scale-Revised (CPRS-R:L) questionnaire. To investigate the presence of SD parents, the Sleep Disturbance Scale for Children (SDSC) was completed. Results: Thirty-eight patients (M 61%, F 39%, mean age 11.1 ± 4.65 years) were included in the study. Although only two had a prior SD diagnosis, 71.1% (N = 27) exhibited pathological scores on SDSC. No statistically significant associations were found between positive SDSC results and genetic microdeletion, intellectual disability (ID), or other medical conditions/treatments. However, a positive correlation emerged between SDSC scores and Conners’ Global Index (p = 0.048) and Restless/Impulsive (p = 0.01) scores, CBCL externalizing (p = 0.02), internalizing (p = 0.01), and total scores (p = 0.05). Conversely, a negative linear relationship was observed between the SDSC score and the ABAS GAC and ABAS CAD scores (p = 0.025). Conclusion: We detected an SD in 71.1% of our sample, with a positive relation between SD and internalizing and externalizing symptom levels, especially hyperactivity and impulsivity. Our study demonstrated a high prevalence of SD in pediatric patients with SoS, highlighting that all patients should be screened for this problem, which has a great impact on the quality of life of patients and their families.</p
- …