7,842 research outputs found

    Test of nuclear level density inputs for Hauser-Feshbach model calculations

    Full text link
    The energy spectra of neutrons, protons, and alpha-particles have been measured from the d+59Co and 3He+58Fe reactions leading to the same compound nucleus, 61$Ni. The experimental cross sections have been compared to Hauser-Feshbach model calculations using different input level density models. None of them have been found to agree with experiment. It manifests the serious problem with available level density parameterizations especially those based on neutron resonance spacings and density of discrete levels. New level densities and corresponding Fermi-gas parameters have been obtained for reaction product nuclei such as 60Ni,60Co, and 57Fe

    Coordinated design of coding and modulation systems

    Get PDF
    The joint optimization of the coding and modulation systems employed in telemetry systems was investigated. Emphasis was placed on formulating inner and outer coding standards used by the Goddard Spaceflight Center. Convolutional codes were found that are nearly optimum for use with Viterbi decoding in the inner coding of concatenated coding systems. A convolutional code, the unit-memory code, was discovered and is ideal for inner system usage because of its byte-oriented structure. Simulations of sequential decoding on the deep-space channel were carried out to compare directly various convolutional codes that are proposed for use in deep-space systems

    A new method for constructing small-bias spaces from Hermitian codes

    Full text link
    We propose a new method for constructing small-bias spaces through a combination of Hermitian codes. For a class of parameters our multisets are much faster to construct than what can be achieved by use of the traditional algebraic geometric code construction. So, if speed is important, our construction is competitive with all other known constructions in that region. And if speed is not a matter of interest the small-bias spaces of the present paper still perform better than the ones related to norm-trace codes reported in [12]

    Subaru Suprime-Cam Weak Lensing Survey over 33 deg^2

    Get PDF
    Under the currently popular CDM model, mass plays the major role in evolution of large scale structure of the universe. In order to examine the paradigm based on observations, it ould be ideal to use purely mass selected object catalog. Weak lensing surveys enable a blind search of cluster scale objects, and thus could provide such catalogs. We are working on a weak lensing survey using Subaru Prime Focus Camera (Suprime-Cam). In this note, we introduce our survey strategy, and the status as well as the performance of Suprime-Cam as a weak lensing surveyor

    MERLIN radio detection of an interaction zone within a binary Orion proplyd system

    Get PDF
    Presented here are high angular resolution MERLIN 5 GHz (6 cm) continuum observations of the binary proplyd system, LV 1 in the Orion nebula, which consists of proplyd 168--326SE and its binary proplyd companion 168--326NW (separation 0.4 arcsec). Accurate astrometric alignment allows a detailed comparison between these data and published HST PC Halpha and [Oiii] images. Thermal radio sources coincide with the two proplyds and originate in the ionized photoevaporating flows seen in the optical emission lines. Flow velocities of approx 50 km/s from the ionized proplyd surfaces and \geq 100 km/s from a possible micro-jet have been detected using the Manchester Echelle spectrometer. A third radio source is found to coincide with a region of extended, high excitation, optical line emission that lies between the binary proplyds 168--326SE/326NW . This is modelled as a bowshock due to the collision of the photoevaporating flows from the two proplyds. Both a thermal and a non-thermal origin for the radio emission in this collision zone are considered.Comment: 23 pages, 9 figures, accepted by Ap

    3D Reconstruction of the Density Field: An SVD Approach to Weak Lensing Tomography

    Full text link
    We present a new method for constructing three-dimensional mass maps from gravitational lensing shear data. We solve the lensing inversion problem using truncation of singular values (within the context of generalized least squares estimation) without a priori assumptions about the statistical nature of the signal. This singular value framework allows a quantitative comparison between different filtering methods: we evaluate our method beside the previously explored Wiener filter approaches. Our method yields near-optimal angular resolution of the lensing reconstruction and allows cluster sized halos to be de-blended robustly. It allows for mass reconstructions which are 2-3 orders-of-magnitude faster than the Wiener filter approach; in particular, we estimate that an all-sky reconstruction with arcminute resolution could be performed on a time-scale of hours. We find however that linear, non-parametric reconstructions have a fundamental limitation in the resolution achieved in the redshift direction.Comment: 11 pages, 6 figures. Accepted for publication in Ap

    Intrinsic and extrinsic geometries of a tidally deformed black hole

    Full text link
    A description of the event horizon of a perturbed Schwarzschild black hole is provided in terms of the intrinsic and extrinsic geometries of the null hypersurface. This description relies on a Gauss-Codazzi theory of null hypersurfaces embedded in spacetime, which extends the standard theory of spacelike and timelike hypersurfaces involving the first and second fundamental forms. We show that the intrinsic geometry of the event horizon is invariant under a reparameterization of the null generators, and that the extrinsic geometry depends on the parameterization. Stated differently, we show that while the extrinsic geometry depends on the choice of gauge, the intrinsic geometry is gauge invariant. We apply the formalism to solutions to the vacuum field equations that describe a tidally deformed black hole. In a first instance we consider a slowly-varying, quadrupolar tidal field imposed on the black hole, and in a second instance we examine the tide raised during a close parabolic encounter between the black hole and a small orbiting body.Comment: 27 pages, 4 figure

    Interactive Digital Music: Enhancing Listener Engagement with Commercial Music

    Get PDF
    Listeners have long been inspired to interact with music and create new representations of popular releases. Vinyl offered many opportunities to reappropriate chart music, from scratching and tempo manipulation to mixing multiple songs together. More recently, artists could engage their audience to interact with their music by offering mix-stems online for experimentation and sharing. With the extended processing power of mobile devices, the opportunities for interactive music are dramatically increasing. This paper presents research that demonstrates a novel approach to interactive digital music. The research looks at the emergent format of the album app and extends existing paradigms of interactive music playback. The novel album app designed in this research presents a new opportunity for listeners to engage with recorded content by allowing them to explore alternative takes, renditions of a given song in multiple genres, and by allowing direct interaction with embedded mix-stems. The resultant audio remains true to the artist and producer’s studio vision; it is user-influenced, but machine-controlled. The research is conducted in collaboration with artist Daisy and The Dark and was funded by the UK Arts and Humanities Research Council

    Level density of 56^{56}Fe and low-energy enhancement of γ\gamma-strength function

    Full text link
    The 55^{55}Mn(d,n)56(d,n)^{56}Fe differential cross section is measured at Ed=7E_d=7 MeV\@. The 56^{56}Fe level density obtained from neutron evaporation spectra is compared to the level density extracted from the 57^{57}Fe(3(^3He,αγ)56\alpha\gamma)^{56}Fe reaction by the Oslo-type technique. Good agreement is found between the level densities determined by the two methods. With the level density function obtained from the neutron evaporation spectra, the 56^{56}Fe γ\gamma-strength function is also determined from the first-generation γ\gamma matrix of the Oslo experiment. The good agreement between the past and present results for the γ\gamma-strength function supports the validity of both methods and is consistent with the low-energy enhancement of the γ\gamma strength below 4\sim 4 MeV first discovered by the Oslo method in iron and molybdenum isotopes.Comment: 7 pages, 5 figure

    Transnational social capital: the socio‐spatialities of civil society

    Get PDF
    Civil society remains a contested concept, but one that is widely embedded in global development processes. Transnationalism within civil society scholarship is often described dichotomously, either through hierarchical dependency relations or as a more amorphous networked global civil society. These two contrasting spatial imaginaries produce very particular ideas about how transnational relations contribute to civil society. Drawing on empirical material from research with civil society organizations in Barbados and Grenada, in this article I contend that civil society groups use forms of transnational social capital in their work. This does not, however, resonate with the horizontal relations associated with grassroots globalization or vertical chains of dependence. These social relations are imbued with power and agency and are entangled in situated historical, geographical and personal contexts. I conclude that the diverse transnational social relations that are part of civil society activity offer hope and possibilities for continued civil society action in these unexpected spatial arrangements
    corecore