750 research outputs found

    The spectroscopic indistinguishability of red giant branch and red clump stars

    Full text link
    Stellar spectroscopy provides useful information on the physical properties of stars such as effective temperature, metallicity and surface gravity (log g). However, those photospheric characteristics are often hampered by systematic uncertainties. The joint spectro-seismo project (APOKASC) of field red giants has revealed a puzzling offset between the log g determined spectroscopically and those determined using asteroseismology, which is largely dependent on the stellar evolutionary status. Therefore, in this letter, we aim to shed light on the spectroscopic source of the offset using the APOKASC sample. We analyse the log g discrepancy as a function of stellar mass and evolutionary status and discuss the impact of He and carbon isotopic ratio. We first show that for stars at the bottom of the red giant branch, the discrepancy between spectroscopic and asteroseismic log g depends on stellar mass. This indicates that the discrepancy is related to CN cycling. We demonstrate that the C isotopic ratio (12C/13C\rm ^{12}C/^{13}C) has the largest impact on the stellar spectrum. We find that this log g discrepancy shows a similar trend in mass as the 12C/13C\rm ^{12}C/^{13}C ratios expected by stellar evolution theory. Although we do not detect a direct signature of 13C\rm ^{13}C, the data suggests that the discrepancy is tightly correlated to the production of 13C\rm ^{13}C. Moreover, by running a data-driven algorithm (the Cannon) on a synthetic grid trained on the APOGEE data, we quantitatively evaluate the impact of various 12C/13C\rm ^{12}C/^{13}C ratios. While we have demonstrated that 13C\rm ^{13}C impacts all parameters, the size of the impact is smaller than the observed offset in log g. If further tests confirm that 13C\rm ^{13}C is not the main element responsible of the log g problem, the number of spectroscopic effects remaining to be investigated is now relatively limited. [Abridged]Comment: 4 Pages, 6 Figures. Accepted for publication in A&

    IP Eri: A surprising long-period binary system hosting a He white dwarf

    Full text link
    We determine the orbital elements for the K0 IV + white dwarf (WD) system IP Eri, which appears to have a surprisingly long period of 1071 d and a significant eccentricity of 0.25. Previous spectroscopic analyses of the WD, based on a distance of 101 pc inferred from its Hipparcos parallax, yielded a mass of only 0.43 M_\odot, implying it to be a helium-core WD. The orbital properties of IP Eri are similar to those of the newly discovered long-period subdwarf B star (sdB) binaries, which involve stars with He-burning cores surrounded by extremely thin H envelopes, and are therefore close relatives to He WDs. We performed a spectroscopic analysis of high-resolution spectra from the HERMES/Mercator spectrograph and concluded that the atmospheric parameters of the K0 component are Teff=4960T_{\rm eff} = 4960 K, logg=3.3\log{g} = 3.3, [Fe/H] = 0.09 and ξ=1.5\xi = 1.5 km/s. The detailed abundance analysis focuses on C, N, O abundances, carbon isotopic ratio, light (Na, Mg, Al, Si, Ca, Ti) and s-process (Sr, Y, Zr, Ba, La, Ce, Nd) elements. We conclude that IP Eri abundances agree with those of normal field stars of the same metallicity. The long period and non-null eccentricity indicate that this system cannot be the end product of a common-envelope phase; it calls instead for another less catastrophic binary-evolution channel presented in detail in a companion paper (Siess et al. 2014).Comment: 14 pages, 10 figures, 4 tables, accepted for publication in A&A (Update of Table 3, Fig. 8 and text in Sect. 5.1, 5.3 and 6 due to minor corrections on N and Y II

    New determination of abundances and stellar parameters for a set of weak G-band stars

    Full text link
    Weak G-band (wGb) stars are very peculiar red giants almost devoided of carbon and often mildly enriched in lithium. Despite their very puzzling abundance patterns, very few detailed spectroscopic studies existed up to a few years ago, preventing any clear understanding of the wGb phenomenon. We recently proposed the first consistent analysis of published data for 28 wGb stars and identified them as descendants of early A-type to late B-type stars, without being able to conclude on their evolutionary status or the origin of their peculiar abundance pattern. We used newly obtained high-resolution and high SNR spectra for 19 wGb stars in the southern and northern hemisphere to homogeneously derive their fundamental parameters, metallicities, as well as the spectroscopic abundances for Li, C, N, O, Na, Sr, and Ba. We also computed dedicated stellar evolution models that we used to determine the masses and to investigate the evolutionary status and chemical history of the stars in our sample. We confirm that the wGb stars are stars in the mass range 3.2 to 4.2 M_\odot. We suggest that a large fraction could be mildly evolved stars on the SGB currently undergoing the 1st DUP, while a smaller number of stars are more probably in the core He burning phase at the clump. After analysing their abundance pattern, we confirm their strong N enrichment anti-correlated with large C depletion, characteristic of material fully processed through the CNO cycle to an extent not known in other evolved intermediate-mass stars. However, we demonstrate here that such a pattern is very unlikely due to self-enrichment. In the light of the current observational constraints, no solid self-consistent pollution scenario can be presented either, leaving the wGb puzzle largely unsolved.Comment: 19 pages , 14 figures, accepted for publication in Astronomy & Astrophysic

    Deductive synthesis of recursive plans in linear logic

    Get PDF
    Linear logic has previously been shown to be suitable for describing and deductively solving planning problems involving conjunction and disjunction. We introduce a recursively defined datatype and a corresponding induction rule, thereby allowing recursive plans to be synthesised. In order to make explicit the relationship between proofs and plans, we enhance the linear logic deduction rules to handle plans as a form of proof term
    corecore