4,461 research outputs found

    Spectral Hardening of Large Solar Flares

    Full text link
    RHESSI observations are used to quantitatively study the hard X-ray evolution in 5 large solar flares selected for spectral hardening in the course of the event. The X-ray bremsstrahlung emission from non-thermal electrons is characterized by two spectroscopically distinct phases: impulsive and gradual. The impulsive phase usually consists of several emission spikes following a soft-hard-soft spectral pattern, whereas the gradual stage manifests itself as spectral hardening while the flux slowly decreases. Both the soft-hard-soft (impulsive) phase and the hardening (gradual) phase are well described by piecewise linear dependence of the photon spectral index on the logarithm of the hard X-ray flux. The different linear parts of this relation correspond to different rise and decay phases of emission spikes. The temporal evolution of the spectra is compared with the configuration and motion of the hard X-ray sources in RHESSI images. These observations reveal that the two stages of electron acceleration causing these two different behaviors are closely related in space and time. The transition between the impulsive and gradual phase is found to be smooth and progressive rather than abrupt. This suggests that they arise because of a slow change in a common accelerator rather than being caused by two independent and distinct acceleration processes. We propose that the hardening during the decay phase is caused by continuing particle acceleration with longer trapping in the accelerator before escape.Comment: accepted by Ap

    Focusing on the extended X-ray emission in 3C 459 with a Chandra follow-up observation

    Get PDF
    6 pages, 4 figures. Reproduced with permission from Astronomy & Astrophysics. © 2019 ESO.Aims. We investigated the X-ray emission properties of the powerful radio galaxy 3C 459 revealed by a recent Chandra follow-up observation carried out in October 2014 with a 62 ks exposure. Methods. We performed an X-ray spectral analysis from a few selected regions on an image obtained from this observation and also compared the X-ray image with a 4.9 GHz VLA radio map available in the literature. Results. The dominant contribution comes from the radio core but significant X-ray emission is detected at larger angular separations from it, surrounding both radio jets and lobes. According to a scenario in which the extended X-ray emission is due to a plasma collisionally heated by jet-driven shocks and not magnetically dominated, we estimated its temperature to be ∼0.8 keV. This hot gas cocoon could be responsible for the radio depolarization observed in 3C 459, as recently proposed also for 3C 171 and 3C 305. On the other hand, our spectral analysis and the presence of an oxygen K edge, blueshifted at 1.23 keV, cannot exclude the possibility that the X-ray radiation originating from the inner regions of the radio galaxy could be intercepted by some outflow of absorbing material intervening along the line of sight, as already found in some BAL quasars.Peer reviewe

    The Long Term Optical Variability of the BL Lac object S5 0716+714: Evidence for a Precessing Jet

    Full text link
    We present the historic light curve of the BL Lac object S5 0716+714, spanning the time interval from 1953 to 2003, built using Asiago archive plates and our recent CCD observations, together with literature data. The source shows an evident long term variability, over which well known short term variations are superposed. In particular, in the period from 1961 to 1983 the mean brightness of S5 0716+714 remained significantly fainter than that observed after 1994. Assuming a constant variation rate of the mean magnitude we can estimate a value of about 0.11 magnitude/year. The simultaneous occurrence of decreasing ejection velocities of superluminal moving components in the jet reported by Bach et al. (2005) suggests that both phenomena are related to the change of the direction of the jet to the line of sight from about 5 to 0.7 degrees for an approximately constant bulk Lorentz factor of about 12. A simple explanation is that of a precessing relativistic jet, which should presently be close to the smallest orientation angle. One can therefore expect in the next ten years a decrease of the mean brightness of about 1 magnitude.Comment: to appear on The Astronomical Journal, 17 pages, 7 figures. Fig.2 is given as a separated jpg fil

    Individual Expectations and Aggregate Macro Behavior

    Get PDF
    The way in which individual expectations shape aggregate macroeconomic variables is crucial for the transmission and effectiveness of monetary policy. We study the individual expectations formation process and the interaction with monetary policy, within a standard New Keynesian model, by means of laboratory experiments with human subjects. We find that a more aggressive monetary policy that sets the interest rate more than point for point in response to inflation stabilizes inflation in our experimental economies. We use a simple model of individual learning, with a performance-based evolutionary selection among heterogeneous forecasting heuristics, to explain coordination of individual expectations and aggregate macro behavior observed in the laboratory experiments. Three aggregate outcomes are observed: convergence to some equilibrium level, persistent oscillatory behavior and oscillatory convergence. A simple heterogeneous expectations switching model fits individual learning as well as aggregate outcomes and outperforms homogeneous expectations benchmarks.

    Lyapunov functions for a non-linear model of the X-ray bursting of the microquasar GRS 1915+105

    Get PDF
    This paper introduces a biparametric family of Lyapunov functions for a non-linear mathematical model based on the FitzHugh-Nagumo equations able to reproduce some main features of the X-ray bursting behaviour exhibited by the microquasar GRS 1915+105. These functions are useful to investigate the properties of equilibrium points and allow us to demonstrate a theorem on the global stability. The transition between bursting and stable behaviour is also analyzed.Comment: Published on International Journal of Non-Linear Mechanics, vol. 88, pp. 142-14

    Slow and fast components in the X-ray light curves of Gamma-Ray Bursts

    Get PDF
    Gamma-ray burst light curves show quite different patterns: from very simple to extremely complex. We present a temporal and spectral study of the light curves in three energy bands (2-5, 5-10, 10-26 keV) of ten GRBs detected by the Wide Field Cameras on board BeppoSAX. For some events the time profiles are characterized by peaks superposed on a slowly evolving pedestal, which in some cases becomes less apparent at higher energies. We describe this behaviour with the presence of two components (slow and fast) having different variability time scales. We modelled the time evolution of slow components by means of an analytical function able to describe asymmetric rising and decaying profiles. The residual light curves, after the subtraction of the slow components, generally show structures more similar to the original curves in the highest energy band. Spectral study of these two components was performed evaluating their hardness ratios, used also to derive photon indices. Slow components are found generally softer than the fast ones suggesting that their origin is likely different. Being typical photon indices lower than those of the afterglows there is no evidence that the emission processes are similar. Another interesting possibility is that slow components can be related to the presence of a hot photosphere having a thermal spectrum with kT around a few keV superposed to a rapid variable non-thermal emission of the fast component.Comment: 16 pages, 20 figures (18 color, 2 B&W), accepted for publication in Astronomy and Astrophysic

    The High Energy Emission of the Crab Nebula from 20 keV to 6 MeV with INTEGRAL

    Full text link
    The SPI spectrometer aboard the INTEGRAL mission observes regularly the Crab Nebula since 2003. We report on observations distributed over 5.5 years and investigate the variability of the intensity and spectral shape of this remarkable source in the hard X-rays domain up to a few MeV. While single power law models give a good description in the X-ray domain (mean photon index ~ 2.05) and MeV domain (photon index ~ 2.23), crucial information are contained in the evolution of the slope with energy between these two values. This study has been carried out trough individual observations and long duration (~ 400 ks) averaged spectra. The stability of the emission is remarkable and excludes a single power law model. The slopes measured below and above 100 keV agree perfectly with the last values reported in the X-ray and MeV regions respectively, but without indication of a localized break point. This suggests a gradual softening in the emission around 100 keV and thus a continuous evolution rather than an actual change in the mechanism parameters. In the MeV region, no significant deviation from the proposed power law model is visible up to 5-6 MeV. Finally, we take advantage of the spectroscopic capability of the instrument to seek for previously reported spectral features in the covered energy range with negative results for any significant cyclotron or annihilation emission on 400 ks timescales. Beyond the scientific results, the performance and reliability of the SPI instrument is explicitly demonstrated, with some details about the most appropriate analysis method.Comment: accepted for publication in ApJ; 4 figures, 2 table

    The 26 year-long X-ray light curve and the X-ray spectrum of the BL Lac Object 1E 1207.9+3945 in its brightest state

    Full text link
    We studied the temporal and spectral evolution of the synchrotron emission from the high energy peaked BL Lac object 1E 1207.9+3945. Two recent observations have been performed by the XMM-Newton and Swift satellites; we carried out X-ray spectral analysis for both of them, and photometry in optical-ultraviolet filters for the Swift one. Combining the results thus obtained with archival data we built the long-term X-ray light curve, spanning a time interval of 26 years, and the Spectral Energy Distribution (SED) of this source. The light curve shows a large flux increasing, about a factor of six, in a time interval of a few years. After reaching its maximum in coincidence with the XMM-Newton pointing in December 2000 the flux decreased in later years, as revealed by Swift. The very good statistics available in the 0.5-10 keV XMM-Newton X-ray spectrum points out a highly significant deviation from a single power law. A log-parabolic model with a best fit curvature parameter of 0.25 and a peak energy at ~1 keV describes well the spectral shape of the synchrotron emission. The simultaneous fit of Swift UVOT and XRT data provides a milder curvature (b~0.1) and a peak at higher energies (~15 keV), suggesting a different state of source activity. In both cases UVOT data support the scenario of a single synchrotron emission component extending from the optical/UV to the X-ray band. New X-ray observations are important to monitor the temporal and spectral evolution of the source; new generation gamma-ray telescopes like AGILE and GLAST could for the first time detect its inverse Compton emission.Comment: 7 pages, 6 figures, accepted for publication in A&

    The complex time behaviour of the microquasar GRS 1915+105 in the \rho-class observed with BeppoSAX. III: The hard X-ray delay and limit cycle mapping

    Full text link
    The microquasar GRS1915+105 was observed by BeppoSAX in October 2000 for about ten days while the source was in \rho-mode, which is characterized by a quasi-regular type I bursting activity. This paper presents a systematic analysis of the delay of the hard and soft X-ray emission at the burst peaks. The lag, also apparent from the comparison of the [1.7-3.4] keV light curves with those in the [6.8-10.2] keV range, is evaluated and studied as a function of time, spectral parameters, and flux. We apply the limit cycle mapping technique, using as independent variables the count rate and the mean photon rate. The results using this technique were also cross-checked using a more standard approach with the cross-correlation methods. Data are organized in runs, each relative to a continuous observation interval. The detected hard-soft delay changes in the course of the pointing from about 3 s to about 10 s and presents a clear correlation with the baseline count rate.Comment: accepted for publication in A&

    Optical and Radio monitoring of S5 1803+74

    Get PDF
    The optical (BVRI) and radio (8.4 GHz) light curves of S5 1803+784 on a time span of nearly 6 years are presented and discussed. The optical light curve showed an overall variation greater than 3 mag, and the largest changes occured in three strong flares. No periodicity was found in the light curve on time scales up to a year. The variability in the radio band is very different, and shows moderate oscillations around an average constant flux density rather than relevant flares, with a maximum amplitude of ∼\sim30%, without a simultaneous correspondence between optical and radio luminosity. The optical spectral energy distribution was always well fitted by a power law. The spectral index shows small variations and there is indication of a positive correlation with the source luminosity. Possible explanations of the source behaviour are discussed in the framework of current models.Comment: 25 pages, 12 figure
    • …
    corecore