3,793 research outputs found

    Spectral Hardening of Large Solar Flares

    Full text link
    RHESSI observations are used to quantitatively study the hard X-ray evolution in 5 large solar flares selected for spectral hardening in the course of the event. The X-ray bremsstrahlung emission from non-thermal electrons is characterized by two spectroscopically distinct phases: impulsive and gradual. The impulsive phase usually consists of several emission spikes following a soft-hard-soft spectral pattern, whereas the gradual stage manifests itself as spectral hardening while the flux slowly decreases. Both the soft-hard-soft (impulsive) phase and the hardening (gradual) phase are well described by piecewise linear dependence of the photon spectral index on the logarithm of the hard X-ray flux. The different linear parts of this relation correspond to different rise and decay phases of emission spikes. The temporal evolution of the spectra is compared with the configuration and motion of the hard X-ray sources in RHESSI images. These observations reveal that the two stages of electron acceleration causing these two different behaviors are closely related in space and time. The transition between the impulsive and gradual phase is found to be smooth and progressive rather than abrupt. This suggests that they arise because of a slow change in a common accelerator rather than being caused by two independent and distinct acceleration processes. We propose that the hardening during the decay phase is caused by continuing particle acceleration with longer trapping in the accelerator before escape.Comment: accepted by Ap

    Focusing on the extended X-ray emission in 3C 459 with a Chandra follow-up observation

    Get PDF
    6 pages, 4 figures. Reproduced with permission from Astronomy & Astrophysics. © 2019 ESO.Aims. We investigated the X-ray emission properties of the powerful radio galaxy 3C 459 revealed by a recent Chandra follow-up observation carried out in October 2014 with a 62 ks exposure. Methods. We performed an X-ray spectral analysis from a few selected regions on an image obtained from this observation and also compared the X-ray image with a 4.9 GHz VLA radio map available in the literature. Results. The dominant contribution comes from the radio core but significant X-ray emission is detected at larger angular separations from it, surrounding both radio jets and lobes. According to a scenario in which the extended X-ray emission is due to a plasma collisionally heated by jet-driven shocks and not magnetically dominated, we estimated its temperature to be ∼0.8 keV. This hot gas cocoon could be responsible for the radio depolarization observed in 3C 459, as recently proposed also for 3C 171 and 3C 305. On the other hand, our spectral analysis and the presence of an oxygen K edge, blueshifted at 1.23 keV, cannot exclude the possibility that the X-ray radiation originating from the inner regions of the radio galaxy could be intercepted by some outflow of absorbing material intervening along the line of sight, as already found in some BAL quasars.Peer reviewe

    The Long Term Optical Variability of the BL Lac object S5 0716+714: Evidence for a Precessing Jet

    Full text link
    We present the historic light curve of the BL Lac object S5 0716+714, spanning the time interval from 1953 to 2003, built using Asiago archive plates and our recent CCD observations, together with literature data. The source shows an evident long term variability, over which well known short term variations are superposed. In particular, in the period from 1961 to 1983 the mean brightness of S5 0716+714 remained significantly fainter than that observed after 1994. Assuming a constant variation rate of the mean magnitude we can estimate a value of about 0.11 magnitude/year. The simultaneous occurrence of decreasing ejection velocities of superluminal moving components in the jet reported by Bach et al. (2005) suggests that both phenomena are related to the change of the direction of the jet to the line of sight from about 5 to 0.7 degrees for an approximately constant bulk Lorentz factor of about 12. A simple explanation is that of a precessing relativistic jet, which should presently be close to the smallest orientation angle. One can therefore expect in the next ten years a decrease of the mean brightness of about 1 magnitude.Comment: to appear on The Astronomical Journal, 17 pages, 7 figures. Fig.2 is given as a separated jpg fil

    Lyapunov functions for a non-linear model of the X-ray bursting of the microquasar GRS 1915+105

    Get PDF
    This paper introduces a biparametric family of Lyapunov functions for a non-linear mathematical model based on the FitzHugh-Nagumo equations able to reproduce some main features of the X-ray bursting behaviour exhibited by the microquasar GRS 1915+105. These functions are useful to investigate the properties of equilibrium points and allow us to demonstrate a theorem on the global stability. The transition between bursting and stable behaviour is also analyzed.Comment: Published on International Journal of Non-Linear Mechanics, vol. 88, pp. 142-14

    The High Energy Emission of the Crab Nebula from 20 keV to 6 MeV with INTEGRAL

    Full text link
    The SPI spectrometer aboard the INTEGRAL mission observes regularly the Crab Nebula since 2003. We report on observations distributed over 5.5 years and investigate the variability of the intensity and spectral shape of this remarkable source in the hard X-rays domain up to a few MeV. While single power law models give a good description in the X-ray domain (mean photon index ~ 2.05) and MeV domain (photon index ~ 2.23), crucial information are contained in the evolution of the slope with energy between these two values. This study has been carried out trough individual observations and long duration (~ 400 ks) averaged spectra. The stability of the emission is remarkable and excludes a single power law model. The slopes measured below and above 100 keV agree perfectly with the last values reported in the X-ray and MeV regions respectively, but without indication of a localized break point. This suggests a gradual softening in the emission around 100 keV and thus a continuous evolution rather than an actual change in the mechanism parameters. In the MeV region, no significant deviation from the proposed power law model is visible up to 5-6 MeV. Finally, we take advantage of the spectroscopic capability of the instrument to seek for previously reported spectral features in the covered energy range with negative results for any significant cyclotron or annihilation emission on 400 ks timescales. Beyond the scientific results, the performance and reliability of the SPI instrument is explicitly demonstrated, with some details about the most appropriate analysis method.Comment: accepted for publication in ApJ; 4 figures, 2 table

    The 26 year-long X-ray light curve and the X-ray spectrum of the BL Lac Object 1E 1207.9+3945 in its brightest state

    Full text link
    We studied the temporal and spectral evolution of the synchrotron emission from the high energy peaked BL Lac object 1E 1207.9+3945. Two recent observations have been performed by the XMM-Newton and Swift satellites; we carried out X-ray spectral analysis for both of them, and photometry in optical-ultraviolet filters for the Swift one. Combining the results thus obtained with archival data we built the long-term X-ray light curve, spanning a time interval of 26 years, and the Spectral Energy Distribution (SED) of this source. The light curve shows a large flux increasing, about a factor of six, in a time interval of a few years. After reaching its maximum in coincidence with the XMM-Newton pointing in December 2000 the flux decreased in later years, as revealed by Swift. The very good statistics available in the 0.5-10 keV XMM-Newton X-ray spectrum points out a highly significant deviation from a single power law. A log-parabolic model with a best fit curvature parameter of 0.25 and a peak energy at ~1 keV describes well the spectral shape of the synchrotron emission. The simultaneous fit of Swift UVOT and XRT data provides a milder curvature (b~0.1) and a peak at higher energies (~15 keV), suggesting a different state of source activity. In both cases UVOT data support the scenario of a single synchrotron emission component extending from the optical/UV to the X-ray band. New X-ray observations are important to monitor the temporal and spectral evolution of the source; new generation gamma-ray telescopes like AGILE and GLAST could for the first time detect its inverse Compton emission.Comment: 7 pages, 6 figures, accepted for publication in A&

    The complex time behaviour of the microquasar GRS 1915+105 in the \rho-class observed with BeppoSAX. III: The hard X-ray delay and limit cycle mapping

    Full text link
    The microquasar GRS1915+105 was observed by BeppoSAX in October 2000 for about ten days while the source was in \rho-mode, which is characterized by a quasi-regular type I bursting activity. This paper presents a systematic analysis of the delay of the hard and soft X-ray emission at the burst peaks. The lag, also apparent from the comparison of the [1.7-3.4] keV light curves with those in the [6.8-10.2] keV range, is evaluated and studied as a function of time, spectral parameters, and flux. We apply the limit cycle mapping technique, using as independent variables the count rate and the mean photon rate. The results using this technique were also cross-checked using a more standard approach with the cross-correlation methods. Data are organized in runs, each relative to a continuous observation interval. The detected hard-soft delay changes in the course of the pointing from about 3 s to about 10 s and presents a clear correlation with the baseline count rate.Comment: accepted for publication in A&

    Log-parabolic spectra and particle acceleration in blazars. III: SSC emission in the TeV band from Mkn 501

    Full text link
    Curved broad-band spectral distributions of non-thermal sources like blazars are described well by a log-parabolic (LP) law where the second degree term measures the curvature. LP energy spectra can be obtained for relativistic electrons by means of a statistical acceleration mechanism whose probability of acceleration depends on energy. In this paper we compute the spectra radiated by an electron population via synchrotron (S) and Synchro-Self Compton(SSC) processes to derive the relations between the LP parameters. These spectra were obtained by means of an accurate numerical code. We found that the ratio between the curvature parameters of the S spectrum to that of the electrons is equal to about 0.2 instead of 0.25, the value foreseen in the delta approximation. Inverse Compton spectra are also intrinsically curved and can be approximated by a log-parabola only in limited ranges. The curvature parameter, estimated around the SED peak, may vary from a lower value than that of the S spectrum up to that of emitting electrons depending on whether the scattering is in the Thomson or in the Klein-Nishina regime. We applied this analysis to computing the SSC emission from the BL Lac object Mkn 501 during the large flare of April 1997. We fit simultaneous BeppoSAX and CAT data and reproduced intensities and spectral curvatures of both components with good accuracy. The large curvature observed in the TeV range was found to be mainly intrinsic, and therefore did not require a large pair production absorption against the extragalactic background. We regard this finding as an indication that the Universe is more transparent at these energies than previously assumed by several models found in the literature. This conclusion is supported by recent detection of two relatively high redshift blazars with H.E.S.S.Comment: Comments: 12 pages, 11 figures. Accepted for publication in the Astronomy and Astrophysic

    WATCAT: a tale of wide-angle tailed radio galaxies

    Full text link
    We present a catalog of 47 wide-angle tailed radio galaxies (WATs), the WATCAT; these galaxies were selected by combining observations from the National Radio Astronomy Observatory/Very Large Array Sky Survey (NVSS), the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST), and the Sloan Digital Sky Survey (SDSS), and mainly built including a radio morphological classification. We included in the catalog only radio sources showing two-sided jets with two clear "warmspots" (i.e., jet knots as bright as 20% of the nucleus) lying on the opposite side of the radio core, and having classical extended emission resembling a plume beyond them. The catalog is limited to redshifts z ≤\leq 0.15, and lists only sources with radio emission extended beyond 30 kpc from the host galaxy. We found that host galaxies of WATCAT sources are all luminous (-20.5 ≳\gtrsim Mr ≳\gtrsim -23.7), red early-type galaxies with black hole masses in the range 108≲10^8\lesssim MBH≲109_{\rm BH} \lesssim 10^9 M⊙_\odot. The spectroscopic classification indicates that they are all low-excitation galaxies (LEGs). Comparing WAT multifrequency properties with those of FRI and FRII radio galaxies at the same redshifts, we conclude that WATs show multifrequency properties remarkably similar to FRI radio galaxies, having radio power of typical FRIIs
    • …
    corecore