42 research outputs found

    Exhaled nitric oxide: a marker of pulmonary hemodynamics in heart failure

    Get PDF
    AbstractObjectivesWe sought to test the hypothesis that patients with decompensated heart failure (HF) lose a compensatory process whereby nitric oxide (NO) maintains pulmonary vascular tone.BackgroundExhaled nitric oxide (eNO) partially reflects vascular endothelial NO release. Levels of eNO are elevated in patients with compensated HF and correlate inversely with pulmonary artery pressures (PAP), reflecting pulmonary vasodilatory activity.MethodsWe measured the mean mixed expired NO content of a vital-capacity breath using chemiluminescence in patients with compensated HF (n = 30), decompensated HF (n = 7) and in normal control subjects (n = 90). Pulmonary artery pressures were also measured in patients with HF. The eNO and PAP were determined sequentially during therapy with intravenous vasodilators in patients with decompensated HF (n = 7) and in an additional group of patients with HF (n = 13) before and during administration of milrinone.ResultsThe eNO was higher in patients with HF than in control subjects (9.9 ± 1.1 ppb vs. 6.2 ± 0.4 ppb, p = 0.002) and inversely correlated with PAP (r = −0.81, p < 0.00001). In marked contrast, patients with decompensated HF exhibited even higher levels of eNO (20.4 ± 6.2 ppb) and PAP, but there was a loss of the inverse relationship between these two variables. During therapy (7.3 ± 6 days) with sodium nitroprusside and diuresis, hemodynamics improved, eNO concentrations fell (11.2 ± 1.2 ppb vs. before treatment, p < 0.05), and the relationship between eNO and PAP was restored. After milrinone, eNO rose proportionally with decreased PAP (p < 0.05).ConclusionsElevated eNO may reflect a compensatory circulatory mechanism in HF that is lost in patients with clinically decompensated HF. The eNO may be an easily obtainable and quantifiable measure of the response to therapy in advanced HF

    The endogenous circadian system worsens asthma at night independent of sleep and other daily behavioral or environmental cycles.

    No full text
    Asthma often worsens at night. To determine if the endogenous circadian system contributes to the nocturnal worsening of asthma, independent of sleep and other behavioral and environmental day/night cycles, we studied patients with asthma (without steroid use) over 3 wk in an ambulatory setting (with combined circadian, environmental, and behavioral effects) and across the circadian cycle in two complementary laboratory protocols performed in dim light, which separated circadian from environmental and behavioral effects: 1) a 38-h "constant routine," with continuous wakefulness, constant posture, 2-hourly isocaloric snacks, and 2) a 196-h "forced desynchrony" incorporating seven identical recurring 28-h sleep/wake cycles with all behaviors evenly scheduled across the circadian cycle. Indices of pulmonary function varied across the day in the ambulatory setting, and both laboratory protocols revealed significant circadian rhythms, with lowest function during the biological night, around 4:00 AM, uncovering a nocturnal exacerbation of asthma usually unnoticed or hidden by the presence of sleep. We also discovered a circadian rhythm in symptom-based rescue bronchodilator use (β2-adrenergic agonist inhaler) whereby inhaler use was four times more likely during the circadian night than day. There were additive influences on asthma from the circadian system plus sleep and other behavioral or environmental effects. Individuals with the lowest average pulmonary function tended to have the largest daily circadian variations and the largest behavioral cycle effects on asthma. When sleep was modeled to occur at night, the summed circadian, behavioral/environmental cycle effects almost perfectly matched the ambulatory data. Thus, the circadian system contributes to the common nocturnal worsening of asthma, implying that internal biological time should be considered for optimal therapy
    corecore