6 research outputs found

    Recent dynamics of forest fires in <i>Quercus suber</i> stands in Sardinia, Corsica and Catalonia

    Get PDF
    In this study, we analyzed the recent dynamics of forest fires in Quercus suber stands in Sardinia (Italy), Corsica (France), and Catalonia (Spain) for the period 2003-2015

    Predicting and Mapping Potential Fire Severity for Risk Analysis at Regional Level Using Google Earth Engine

    No full text
    Despite being a natural ecological process, wildfires are dramatic events that, accelerated by global change, could negatively affect ecosystem services depending on their severity level. However, because of data processing constraints, fire severity has been mostly neglected in risk analysis (especially at regional levels). Indeed, previous studies addressing fire severity focused mainly on analyzing single fire events, preventing the projection of the results over large areas. Although, building and projecting robust models of fire severity to integrate into risk analysis is of main importance to best anticipate decisions. Here, taking advantage of free data-processing platforms, such as Google Earth Engine, we use more than 1000 fire records from Western Italy and Southern France in the years 2004–2017, to assess the performance of random forest models predicting the relativized delta normalized burn ratio (rdNBR) used as proxy of fire severity. Furthermore, we explore the explanatory capacity and meaning of several variables related to topography, vegetation, and burning conditions. To show the potentialities of this approach for operational purposes, we projected the model for one of the regions (Sardinia) within the study area. Results showed that machine learning algorithms explain up to 75% of the variability in rdNBR, with variables related to vegetation amount and topography being the most important. These results highlight the potential usefulness of these tools for mapping fire severity in risk assessments

    Analyzing the recent dynamics of wildland fires in Quercus suber L. woodlands in Sardinia (Italy), Corsica (France) and Catalonia (Spain)

    No full text
    Wildland fires represent a major threat to Quercus suber L. ecosystems, which provide relevant socioeconomic and ecological services in the Mediterranean Basin. In this work, we analyzed recent wildland fire dynamics in cork oak woodlands along the fire-prone areas of Sardinia (Italy), Corsica (France) and Catalonia (Spain). We first characterized geographic extent and main characteristics of cork oak woodlands in these regions and analyzed how environmental (climate and elevation) and socioeconomic factors (population and land uses) vary in the areas covered by Quercus suber L. We then evaluated how wildfires affected cork oak stands and, by logistic regression analysis, to what extent wildfires in cork oak areas were related to the above set of environmental and anthropic explanatory variables. Results revealed specific variations across study areas in cork oak characteristics as well as in environmental and social factors. We highlighted the spatial and temporal patterns of wildfires on cork oak woodlands, in terms of extent, seasonality, frequency and main driving factors. In the period 2003–2015, the percentage of cork oak woodlands burned ranged from 3.42% in Corsica to 11.30% in Sardinia. A few large and severe wildfires accounted for most of the area burned in cork oak woodlands. The most significant predictive variable that explained the spatial variation in wildland fire ignitions inside or nearby cork oaks was summer precipitation, while the weight of other factors varied depending on the region. This study provides evidence on recent fire dynamics in cork oak woodlands and gives valuable information and insights for the implementation of forest management and planning strategies in the Mediterranean area
    corecore