2,964 research outputs found

    Measurement of an excess in the yield of J/ψ\psi at very low-pTp_{\rm T} in Pb--Pb collisions with the ALICE detector

    Full text link
    We report on the measurement of J/ψ\psi production at very low transverse momentum (pT<p_{\rm T} < 300 MeV/cc) in Pb--Pb collisions performed with the ALICE detector at the LHC. We find an excess in the yield of J/ψ\psi with respect to expectations from hadronic production. Coherent photo-production of J/ψ\psi is proposed as a plausible origin of this excess. We show the nuclear modification factor of very low-pTp_{\rm T} J/ψ\psi as a function of centrality. Then we measure the J/ψ\psi coherent photoproduction cross section in peripheral events assuming that it is the mechanism at the origin of the measured excess. It's worth noting that the observation of J/ψ\psi coherent photoproduction in Pb--Pb collisions at impact parameters smaller than twice the nuclear radius has never been observed so far and would open new theoretical challenges.Comment: Proceeding of EDS Blois Conference, 29th June - 4th July 2015, Borgo, Corsic

    Vector meson production in the dimuon channel in the ALICE experiment at the LHC

    Full text link
    The purpose of the ALICE experiment at the LHC is the study of the Quark Gluon Plasma (QGP) formed in ultra-relativistic heavy-ion collisions, a state of matter in which quarks and gluons are deconfined. The properties of this state of strongly-interacting matter can be accessed through the study of light vector mesons (ρ\rho, ω\omega and ϕ\phi). Indeed, the strange quark content (ssˉs\bar{s}) of the ϕ\phi meson makes its study interesting in connection with the strangeness enhancement observed in heavy-ion collisions. Moreover, ρ\rho and ω\omega spectral function studies give information on chiral symmetry restoration. Vector meson production in pp collisions is important as a baseline for heavy-ion studies and for constraining hadronic models. We present results on light vector meson production obtained with the muon spectrometer of the ALICE experiment in pp collisions at s\sqrt{s}=7 TeV. Production ratios, integrated and differential cross sections for ϕ\phi and ω\omega are presented. Those results are extracted for pT>1p_{\rm T} > 1 GeV/cc and 2.5<y<42.5 < y < 4

    Analysis of the phenomenon of speculative trading in one of its basic manifestations: postage stamp bubbles

    Full text link
    We document and analyze the empirical facts concerning one of the clearest evidence of speculation in financial trading as observed in the postage collection stamp market. We unravel some of the mechanisms of speculative behavior which emphasize the role of fancy and collective behavior. In our conclusion, we propose a classification of speculative markets based on two parameters, namely the amplitude of the price peak and a second parameter that measures its ``sharpness''. This study is offered to anchor modeling efforts to realistic market constraints and observations.Comment: 9 pages, 5 figures and 2 tables, in press in Int. J. Mod. Phys.

    B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells.

    Get PDF
    Dendritic cells comprise a system of highly efficient antigen-presenting cells involved in the initiation of T cell responses. Herein, we investigated the role of the CD28 pathway during alloreactive T cell proliferation induced by dendritic-Langerhans cells (D-Lc) generated by culturing human cord blood CD34+ progenitor cells with granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. In addition to expressing CD80 (B7/BB1), a subset of D-Lc expressed B70/B7-2. Binding of the CTLA4-Ig fusion protein was completely inhibited by a combination of monoclonal antibodies (mAbs) against CD80 and B70/B7-2, indicating the absence of expression of a third ligand for CD28/CTLA-4. It is interesting to note that mAbs against CD86 completely prevented the binding of CTLA4-Ig in the presence of mAbs against CD80 and bound to a B70/B7-2-transfected fibroblast cell line, demonstrating that the B70/B7-2 antigen is identical to CD86. CD28 triggering was essential during D-Lc-induced alloreaction as it was inhibited by mAbs against CD28 (9 out of 11 tested). However, none of six anti-CD80 mAbs demonstrated any activity on the D-Lc-induced alloreaction, though some were previously described as inhibitory in assays using CD80-transfected cell lines. In contrast, a mAb against CD86 (IT-2) was found to suppress the D-Lc-dependent alloreaction by 70%. This inhibitory effect was enhanced to &gt; or = 90% when a combination of anti-CD80 and anti-CD86 mAbs was used. The present results demonstrate that D-Lc express, in addition to CD80, the other ligand for CTLA-4, CD86 (B70/B7-2), which plays a primordial role during D-Lc-induced alloreaction

    Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC)

    Get PDF
    Used in the fixed-target mode, the multi-TeV LHC proton and lead beams allow for studies of heavy-flavour hadroproduction with unprecedented precision at backward rapidities - far negative Feyman-x - using conventional detection techniques. At the nominal LHC energies, quarkonia can be studies in detail in p+p, p+d and p+A collisions at sqrt(s_NN) ~ 115 GeV as well as in Pb+p and Pb+A collisions at sqrt(s_NN) ~ 72 GeV with luminosities roughly equivalent to that of the collider mode, i.e. up to 20 fb-1 yr-1 in p+p and p+d collisions, up to 0.6 fb-1 yr-1 in p+A collisions and up to 10 nb-1 yr-1 in Pb+A collisions. In this paper, we assess the feasibility of such studies by performing fast simulations using the performance of a LHCb-like detector.Comment: 12 pages, 14 figure

    Feasibility Study for a Muon Forward Tracker in the ALICE Experiment

    Full text link
    ALICE is the experiment dedicated to the study of the quark gluon plasma in heavy-ion collisions at the CERN LHC. Improvements of ALICE sub-detectors are envisaged for the upgrade plans of year 2017. The Muon Forward Tracker (MFT) is a proposal in view of this upgrade, motivated both by the possibility to overcome the intrinsic limitations of the Muon Spectrometer, and by the possibility to perform new measurements of general interest for the whole ALICE physics. The measurement of the offset of single muons and dimuons will permit to disentangle open charm (cτ150μc\tau \sim 150 \mum) and beauty (cτ500μc\tau \sim 500 \mum) production. The MFT, thanks to its tracking capabilities, will allow to improve the mass resolution of the resonances for a better separation between ρ/ω\rho/\omega and ϕ\phi, J/ψJ/\psi and ψ\psi', and - to a lesser extent - Υ\Upsilon family resonances. In addition, it will help to reject a large fraction of muons coming from pion and kaon decays, improving the signal over background ratio. In order to evaluate the feasibility of this upgrade, a setup composed by five silicon planes was simulated within the AliRoot framework. In this report, we present preliminary results on the MFT performances in a low-multiplicity environment

    Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production

    Get PDF
    We outline the case for heavy-ion-physics studies using the multi-TeV lead LHC beams in the fixed-target mode. After a brief contextual reminder, we detail the possible contributions of AFTER@LHC to heavy-ion physics with a specific emphasis on quarkonia. We then present performance simulations for a selection of observables. These show that Υ(nS)\Upsilon(nS), J/ψJ/\psi and ψ(2S)\psi(2S) production in heavy-ion collisions can be studied in new energy and rapidity domains with the LHCb and ALICE detectors. We also discuss the relevance to analyse the Drell-Yan pair production in asymmetric nucleus-nucleus collisions to study the factorisation of the nuclear modification of partonic densities and of further quarkonia to restore their status of golden probes of the quark-gluon plasma formation.Comment: 18 pages, 7 figure

    Physics perspectives with AFTER@LHC (A Fixed Target ExpeRiment at LHC)

    Get PDF
    AFTER@LHC is an ambitious fixed-target project in order to address open questions in the domain of proton and neutron spins, Quark Gluon Plasma and high-xx physics, at the highest energy ever reached in the fixed-target mode. Indeed, thanks to the highly energetic 7 TeV proton and 2.76 A.TeV lead LHC beams, center-of-mass energies as large as sNN\sqrt{s_{NN}} = 115 GeV in pp/pA and sNN\sqrt{s_{NN}} = 72 GeV in AA can be reached, corresponding to an uncharted energy domain between SPS and RHIC. We report two main ways of performing fixed-target collisions at the LHC, both allowing for the usage of one of the existing LHC experiments. In these proceedings, after discussing the projected luminosities considered for one year of data taking at the LHC, we will present a selection of projections for light and heavy-flavour production.Peer Reviewe
    corecore