799 research outputs found

    Identification of nonlinear vibrating structures: Part I -- Formulation

    Get PDF
    A self-starting multistage, time-domain procedure is presented for the identification of nonlinear, multi-degree-of-freedom systems undergoing free oscillations or subjected to arbitrary direct force excitations and/or nonuniform support motions. Recursive least-squares parameter estimation methods combined with nonparametric identification techniques are used to represent, with sufficient accuracy, the identified system in a form that allows the convenient prediction of its transient response under excitations that differ from the test signals. The utility of this procedure is demonstrated in a companion paper

    Identification of nonlinear vibrating structures: Part II -- Applications

    Get PDF
    A time-domain procedure for the identification of nonlinear vibrating structures, presented in a companion paper, is applied to a "calibration" problem which incorporates realistic test situations and nonlinear structural characteristics widely encountered in the applied mechanics field. The "data" set is analyzed to develop suitable, approximate nonlinear system representations. Subsequently, a "validation" test is conducted to demonstrate the range of validity of the method under discussion. It is shown that the procedure furnishes a convenient means for constructing reduced-order nonlinear nonparametric mathematical models of reasonably high fidelity in regard to reproducing the response of the test article under dynamic loads that differ from the identification test loads

    Competing Interactions among Supramolecular Structures on Surfaces

    Full text link
    A simple model was constructed to describe the polar ordering of non-centrosymmetric supramolecular aggregates formed by self assembling triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice with an Ising-like penalty associated with reversing the orientation of nearest neighbor dipoles. The choice of the potentials is based on experimental results and structural features of the supramolecular objects. For films of finite thickness, we find a periodic structure along an arbitrary direction perpendicular to the substrate normal, where the repeat unit is composed of two equal width domains with dipole up and dipole down configuration. When a short range interaction between the surface and the dipoles is included the balance between the up and down dipole domains is broken. Our results suggest that due to surface effects, films of finite thickness have a none zero macroscopic polarization, and that the polarization per unit volume appears to be a function of film thickness.Comment: 3 pages, 3 eps figure

    System Identification and Seismic Performance Evaluation of Earth Dams

    Get PDF
    A system identification technique is developed to provide dynamic properties of earth dams from their seismic records. The technique is utilized to assess the capabilities and limitation of analytical models in terms of dynamic nonlinear constitutive relationships as well as damping. The technique is based on the least square method using Gaussian hypothesis. Earth dams are modeled as a three-dimensional nonhomogeneous visco-elasto-plastic soil structure. The forward problem is solved using a Galerkin-Ritz formulation in which the solution is expanded using basis function, which is selected to be the eigenmodes. The spatial variation of the excitation is considered by using global shape functions defined on the boundary domain to interpolate the input motion on the dam boundaries using recorded motion at discrete locations. The constitutive model is used to accommodate the nonlinear path dependent behavior of the dam material as well as coupling between different constituent of the soil mixture. The model is implemented using Druker-Prager multi-yield surface model and linear Kelvin-Voigt model. Application to instrumented dams, in recent earthquake, showed significant match between the recorded response and the optimal estimated response

    Evaluation of on-line pulse control for vibration suppression in flexible spacecraft

    Get PDF
    On-line pulse control for vibration suppression in a flexible spacecraft was evaluated. A continuous beam vs. a truss was modeled. A linear finite element model was used to determine the truss characteristics. Control issues outlined are ED pulse actuator development, pseudo pulse algorithm development, and large nonlinear simulation problems

    A Nonparametric Identification Technique for Nonlinear Dynamic Problems

    Get PDF
    A nonparametric identification technique is presented that uses informatio

    An Overview of Active Structural Control under Seismic Loads

    Get PDF
    The concept of active structural control as a means of structural protection against seismic loads, developed over the last 20 years, has received considerable attention in recent years. It has now reached the stage where active systems have been installed in full-scale structures. It is the purpose of this paper to provide an overview of this development with special emphasis placed on laboratory experiments using model structures and on full-scale implementation of some active control systems. Included in this paper is a report on the formation of a U.S. Panel on Structural Control Research and some discussion on possible future research directions in this exciting research area

    Random close packing of polydisperse hard spheres

    Full text link
    We study jammed configurations of hard spheres as a function of compression speed using an event-driven molecular dynamics algorithm. We find that during the compression, the pressure follows closely the metastable liquid branch until the system gets arrested into a glass state as the relaxation time exceeds the compression speed. Further compression yields a jammed configuration that can be regarded as the infinite pressure configuration of that glass state. Consequently, we find that the density of jammed packings varies from 0.638 to 0.658 for polydisperse hard spheres and from 0.635 to 0.645 for pure hard spheres upon decreasing the compression rate. This demonstrates that the density at which the systems falls out of equilibrium determines the density at which the system jams at infinite pressure. In addition, we give accurate data for the jamming density as a function of compression rate and size polydispersity.Comment: Four pages, three figure
    • …
    corecore