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System Identification and Seismis Performance Evaluation of Earth
Dams

H. S. Sayed, A. M. Abdel-Ghaffar, and S. F. Masri
Civil Engineering Department, University of Southern California, Los
Angeles, CA

SYNOPSIS A system identification technique is developed to provide dynamic properties of earth dams
from their seismic records. The technique is utilized to assess the capabilities and limitation of
analytical models in terms of dynamic nonlinear constitutive relationships as well as damping. The
technique is based on the least square method using Gaussian hypothesis. Earth dams are modeled as a
three-dimensional nonhomogeneous visco-elasto-plastic soil structure. The forward problem is solved
using a Galerkin-Ritz formulation in which the solution is expanded using basis function, which are
selected to be the eigenmodes. The spatial variation of the excitation is considered by using global
shape functions defined on the boundary domain to interpolate the input motion on the dam boundaries
using recorded motion at discrete locations. The constitutive model is used to accommodate the non-
linear path dependent behavior of the dam material as well as coupling between different constituent
of the soil mixture. The model is implemented using Druker-Prager multi-yield surface model and linear
Kelvin-Voigt model. Application to instrumented dams, in recent earthquake, showed significant match
between the recorded response and the optimal estimated response.

INTRODUCTION 1.The material nonlinearity of the soil.

2.The behavior of the soil as a multi-phase
material which has a similar behavior as a
one phase viscous material [(Bardet et al.
(1990) 1.

3.The geometric three dimensional nature of
these dams.

4.The spatial variation of the excitation
along the dam boundaries.

System identification is the process of
evaluating a model of a real system state from
experimental records measuring the output
(response) of the system due to known or even
unknown input (excitation). What is meant by the
model in the previous definition is the class
of theoretical or mathematical relation by
which the output of the system can be computed
with a minimum level of uncertainty. The system
identification problem can be viewed as a
process of four main steps as follows [Tarantola
(1987)1:

The parameters estimation is achieved using the
least square criterion based on the Gaussian
hypothesis and the assessment of the solution
quality is achieved by evaluating the model

covariance operator as well as the behavior of
l.Performing a series of experiments on the

structure.

2.Selection of a mathematical model for the
physical system based on the observed
experimental data.

3.Estimation of the unknown parameters using
a proper optimality condition.

4,.Assessment of the quality of the identified
model.

Earthquake recorded motion ‘as a full-scale,
large-amplitude experiment’, gives a unique
opportunity to make a quantitative study on the
structure behavior. However, usually a few

transducers may not be optimally placed to

monitor the behavior of the whole structure under
investigation. Such limitation hinders making a
concrete statement on the structure properties.

The mathematical model for the earth dam problem
(figure 1) is chosen based on the preliminary
analysis of the observed and synthesized data. A
visco-elasto-plastic three dimensional model is
found to be the most convenient model to
accommodate the following features of the earth
dams:
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the objective function.

THE INVERSE PROBLEM
Gaussian Hypothesis

The general formulation of the inverse problem
can be considered as a problem of combination of
the state information which can be viewed over
the parameter and observation spaces as well as
the theoretical model state. Herein, the Gaussian
hypothesis is considered in order to describe the
statistical distribution -using a mean and cova-
riance operator- for each state information.

Problem Solution

The most comprehensive way to evaluate the param-
eters is by choosing them in such way the true
model parameters lie in a given range at which
the probability density function (p.d.f.) of the
model parameters is optimized in a certain sense.
Herein, the chosen optimality criterion is the
maximum likelihood criterion which leads to the
least square approach. Basically, the solution of



the inverse problem using least square approach
requires minimizing a cost function which is per—
formed by cumulating the square of the error vec-
tor norm via a covariance operator combined both
the modelization and the observation uncertain-
ties. The error vector is defined as the vector

measuring the deviation between the estimated and
the measured displacement response in time do-

main. The observation covariance operator is as-

sumed to be null, since this study concerns only
one earthquake for each dam.

However, the modelization covariance operator is
still debated. It can be evaluated by repeating
the forward problem for a given set of parameter
with different degrees of sophistication (e.g.
with different numbers of global shape functions,
yield surfaces,...etc.) in order to evaluate the
uncertainty inherent in the modelization state.

OPTIMIZATION TECHNIQUE

The solution of the inverse problem based on
Gaussian hypothesis requires minimizing an
objective function using an unconstrained
optimization technique in which three methods
were used in order to assure efficient
convergence. Some of them have a slow but steady
convergence (cyclic method), others have fast
convergence if the current parameters values are
close enough to the optimal solution such as
Newton method and conjugate directions method.
These three methods are described in any
nonlinear programming reference (e.g.Bazaraa
(1979)) . Finally, the line search technique is
implemented using an adaptive discrete steps in
the selected feasible and improving direction.

COMPUTATIONAL SCHEMS FOR FORWARD PROBLEM

System identification problems require solving
the forward problem (equation of motion) in it-
erative way. The forward problem should be solved
in such a way the level of modelization uncer-
tainty is minimized.

Earth dams are modeled as a three-dimensional
nonhomogeneous structures [Abdel-Ghaffar et al.
(1987) ] subjected to nonuniform ground motion at
their boundaries. The material nonlinearity is
considered using constitutive model (Druker-
Prager multi-yield surface) which is able to sim-
ulate the soil behavior under highly cyclic load-
ing.

Since the hysteretic damping is not -sufficient to
fully account for the energy dissipation mecha-
nism of the dam material [Zegal 1990), energy
dissipation results from the diffusion of pore
water pressure through the porous media is con-
sidered. Thus multi-phase analysis of the soil
should be utilized. To simplify the problem an
analog one-phase viscous model is used to simu-
late the multi-phase model behavior using only

one parameter T(equivalent viscosity coeffi—
cient). Hence a visco-elasto-plastic model can
accommodate the previous essential features of
earth dams.

In order to reduce the computational efforts and
to accommodate complex boundary conditions, a hy-
brid global finite element method which in effect
combines the finite element and Galerkin-Ritz
method is used in the solution of the forward
problem [Mote (1971)]. Global boundary shape

functions are used to interpolate the ground mo-
tion on the dams boundaries to allow the seismic
wave propagation (figure 2). This technique en-
ables a cost-effective computational scheme par-
ticularly when one considers the iterative nature
of the inverse problem which requires solving the
forward problem repeatedly. Moreover, the choice
of linear mode shapes as admissible shape func-
tions reduces tremendously the number of degree
of freedom describes the system and hence the
computational time.

FIRST DEGR!
POLYNOMIAL IN ()

(3 SENSOR LOCATION

Figure 2: Ground motion spatial variation shape
functions.

The multi-yield surface plasticity theory is used
with Druker-Prager yield criterion (figure 3)

[Prevost et al. (1985)]. For updating the yield
surfaces the Ziegler’s hardening rule [Chen

(1988)] is utilized. Furthermore, the hyperbolic
model describes the shear modulus variation with
the level of shear stress via two parameters T,
(ultimate shear stress) G, and (low-strain shear
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modulus) . Nonhomogenity is considered with the
variation of confining pressure in the spatial do-
main.

Gl
Figure 3: Druker-Prager multi-yield surface
model.
APPLICATIONS

Several well-instrumented earth dams were
strongly shaken by the recent Whittier (Oct.
1987) and Loma Prieta (Oct. 1989) earthqguake.The
parameters identification of two existing earth
dams are considered. The first is Puddingstone
earth dam using 1987 Whittier earthquake (5.3 ML)

and the second is Lexington dam using 1989 Loma-
Prieta earthquake (ML=7.0).

Puddingstone dam is located 16 miles northeast
the Whittiers California. The dam material is 60
to 90% sandy silty clay and 10 to 40% sand and
gravel. Lexington dam is located 13.5 miles from
the epicenter of the main shock of the 1989 Loma-
Prieta earthquake. The dam material is composed
of relatively sandy gravelly clay core boarded by
random materials of clay, sand, and gravel. Fig-
ure 4 shows the geometry and the model dimensions
of the two dams.

Pattern Recognition

The a priori information in the observation and
model space are assessed using Fourier amplitude
spectrum, cross spectrum, and coherence spec-
trum. The spectral analysis of the records pro-
vided valuable information on the dynamic
properties of the dam materials (the a priori in-
formation) as well as the dynamic response char-
acteristics (modelization information).
Nonuniform ground motion along the dams bound-
aries, natural frequencies, and mode shapes as
well as nonlinearity can all be detected from the
spectral analysis. Figures 5 and 6 show the cross
correlation spectrum between an input and an out-
put station in the transversal direction of the
dam. The analysis of the cross correlation spec-
trum revealed that the fundamental frequencies

of each dam is approximately 1.9HZ for Pudding-
‘stone dam and 0.9H2 for lexington dam. The coher-
ence function analysis between input and output
stations detect a nonlinearity sources inherent

3168
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Figure 4: Model dimensions and sensor locations.
for Puddingstone and Lexington dams.
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Figure 5: Cross correlation between channel 11
and 13 for Puddingstone dam.

in the physical system as well as nonuniform
boundary motion in Lexington dam (see figure 7).

System Identification for Puddingstone Dam and
Concluded Remarks

The constitutive model parameters of the dam ma-
terial (G,, T., M) are identified using 20 global
shape functions to discretize the spatial domain
(figures 8,9) and 11 yield surfaces to discretize
the stress space. Only the most informative time
period of the record response 0 to 10 sec.
(strongest shaking) is used in the system iden-
tification process and the rest is used to assess
the quality of the solution. The initial values
of the parameters are chosen based on the a pri-
ori and pattern recognition information. Howev-
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Fiqure 6: Cross correlation between channel 3
and 9 for Lexington dam.
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Figure 7: Coherence spectrum between channel 3
and 9 for Lexington dam.

er, Two different initial values are used to
assure convergence to a global minimum. The max-
imum likelihood estimator is given by:

G, = 4.30386x10° + 0.00261x10° psf
T, = 6.54710%x10% * 4.55274x10% psf (1)
M = 8.72702x106 % 0.02122x10% psf.sec

Figures 10,11,12 depict the variation of the ob-
Jective function with the number of iteration and
parameters paths.

QCIOBER t , 1985 WHITIIER NARROWS EARTHQUAKE

PUDDINGSTONE EARTH DAM
COMPUTED MODE SHAPES & FREQUENCIES

MID—POINT QUARTER —POINT
CROSS SECTIONS

CANYOR CROSS—-SECTION
FREQUENCY = 1.9982 HI PERIOD = 0.5004 SEC

Figure 8: Global shape function # 1.

Figure 12: Optimization path for the viscous
damping coefficient parameterm.
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Figure 9: Global shape function # 20.
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Figure 13: Time history of channel 11.

Assessment of the Identified Model Quality

Equation (1) shows that G, and Mhave a reasonable
resolution around the mean value. On the other
hand 1T, has a very a wide resolution around the
mean value, which is attributed to the low level
of earthquake shaking, which excited the dam
within the quasi-linear range so that the model
could not predict accurately the ultimate shear
strength.

Figures 13,14,15, and 16 show the time history as
well as the Fourier amplitude spectrum for the
measured and identified responses. A good match is
obtained even in the time range 10 to 20 sec.
which is not used in the identification process.
Evidently, the identified response has less energy
contents in the high frequency range rather than
the measured response. This is attributed to the
discretization of the spatial domain using finite
number of global shape functions by truncating
the higher order modes.

Figures 17 and 18 show the estimated tangential
shear modulus and the equivalent structural damp-
ing coefficient induced by the hysteretic behavior
of the constitutive model as a function of the
shear strain.
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Figure 14: Time history of channel 12.
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Figure 15: Fourier amplitude spectrum of channel
11.
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Figure 16: Fourier amplitude spectrum of channel
12.
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Figure 17: Estimated tangential shear modulus.
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