5 research outputs found

    Enhanced tyrosine hydroxylase activity induces oxidative stress, causes accumulation of autotoxic catecholamine metabolites, and augments amphetamine effects in vivo.

    Get PDF
    In Parkinson\u27s disease, dopamine-containing nigrostriatal neurons undergo profound degeneration. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosynthesis. TH increases in vitro formation of reactive oxygen species, and previous animal studies have reported links between cytosolic dopamine build-up and oxidative stress. To examine effects of increased TH activity in catecholaminergic neurons in vivo, we generated TH-over-expressing mice (TH-HI) using a BAC-transgenic approach that results in over-expression of TH with endogenous patterns of expression. The transgenic mice were characterized by western blot, qPCR, and immunohistochemistry. Tissue contents of dopamine, its metabolites, and markers of oxidative stress were evaluated. TH-HI mice had a 3-fold increase in total and phosphorylated TH levels and an increased rate of dopamine synthesis. Coincident with elevated dopamine turnover, TH-HI mice showed increased striatal production of

    Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia.

    Get PDF
    BACKGROUND: Genetic mutations underlying familial Alzheimer\u27s disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (App RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aβ content. The App DISCUSSION: Our findings demonstrate that fibrillar Aβ in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology

    Enhanced tyrosine hydroxylase activity induces oxidative stress, causes accumulation of autotoxic catecholamine metabolites, and augments amphetamine effects in vivo

    No full text
    In Parkinson\u27s disease, dopamine-containing nigrostriatal neurons undergo profound degeneration. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosynthesis. TH increases in vitro formation of reactive oxygen species, and previous animal studies have reported links between cytosolic dopamine build-up and oxidative stress. To examine effects of increased TH activity in catecholaminergic neurons in vivo, we generated TH-over-expressing mice (TH-HI) using a BAC-transgenic approach that results in over-expression of TH with endogenous patterns of expression. The transgenic mice were characterized by western blot, qPCR, and immunohistochemistry. Tissue contents of dopamine, its metabolites, and markers of oxidative stress were evaluated. TH-HI mice had a 3-fold increase in total and phosphorylated TH levels and an increased rate of dopamine synthesis. Coincident with elevated dopamine turnover, TH-HI mice showed increased striatal production of

    Preclinical and clinical evaluation of the LRRK2 inhibitor DNL201 for Parkinson\u27s disease

    No full text
    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic risk factors for Parkinson\u27s disease (PD). Increased LRRK2 kinase activity is thought to impair lysosomal function and may contribute to the pathogenesis of PD. Thus, inhibition of LRRK2 is a potential disease-modifying therapeutic strategy for PD. DNL201 is an investigational, first-in-class, CNS-penetrant, selective, ATP-competitive, small-molecule LRRK2 kinase inhibitor. In preclinical models, DNL201 inhibited LRRK2 kinase activity as evidenced by reduced phosphorylation of both LRRK2 at serine-935 (pS935) and Rab10 at threonine-73 (pT73), a direct substrate of LRRK2. Inhibition of LRRK2 by DNL201 demonstrated improved lysosomal function in cellular models of disease, including primary mouse astrocytes and fibroblasts from patients with Gaucher disease. Chronic administration of DNL201 to cynomolgus macaques at pharmacologically relevant doses was not associated with adverse findings. In phase 1 and phase 1b clinical trials in 122 healthy volunteers and in 28 patients with PD, respectively, DNL201 at single and multiple doses inhibited LRRK2 and was well tolerated at doses demonstrating LRRK2 pathway engagement and alteration of downstream lysosomal biomarkers. Robust cerebrospinal fluid penetration of DNL201 was observed in both healthy volunteers and patients with PD. These data support the hypothesis that LRRK2 inhibition has the potential to correct lysosomal dysfunction in patients with PD at doses that are generally safe and well tolerated, warranting further clinical development of LRRK2 inhibitors as a therapeutic modality for PD
    corecore