9 research outputs found

    Pine Nuts : A Review of Recent Sanitary Conditions and Market Development

    Get PDF
    Pine nuts are non-wood forest products (NWFP) with a constantly growing market notwithstanding a series of phytosanitary issues and related trade problems. The aim of this paper is to review the literature on the relationship between phytosanitary problems and trade development. Production and trade of pine nuts in Mediterranean Europe have been negatively affected by the spreading of Diplodia sapinea (a fungus) associated with an adventive insect Leptoglossus occidentalis (fungal vector), with impacts on forest management, production and profitability and thus in value chain organization. Reduced availability of domestic production in markets with a growing demand has stimulated the import of pine nuts. China has become a leading exporter of pine nuts, but its export is affected by a symptom caused by the nuts of some pine species: pine nut syndrome' (PNS). Most of the studies mentioned in the literature review concern PNS occurrence associated with the nuts of Pinus armandii. We highlight the need for a comprehensive and interdisciplinary approach to the analysis of the pine nuts value chain organization, where research on food properties and clinical toxicology may be connected to breeding and forest management, forest pathology and entomology, and trade development.Peer reviewe

    Recreation Potential Assessment at Tamarix Forest Reserves: A Method Based on Multicriteria Evaluation Approach and Landscape Metrics

    Get PDF
    The purpose of this study was to develop new methods to describe outdoor recreation potential based on landscape indicators and systemic multicriteria evolution in the Tamarix forest reserves of Varamin city, a part of Iranian–Turanian forests of the Tehran province in Iran. First, in conducting a multicriteria evaluation, ecological factors that included slope, aspect, elevation, vegetation density, precipitation, temperature, and soil texture were mapped, classified, and coded according to the degree of desirability for outdoor recreation. All these maps were then intersected and the final map of recreational potential for three regions of the forest reserves was prepared. Results showed that the Shokrabad region had more recreation potential than the other two regions (Fakhrabad and Dolatabad) in terms of the sum of ecological factors potentially affecting tourism potential. Second, in conducting a landscape-based method, six of the most important indicators of the landscape that are effective in outdoor recreational potential were developed for each region. The combination of these landscape features determined the value of a place for recreational activities from a landscape perspective. The results showed that a large part of the Shokrabad region and a smaller number of places in the Fakhrabad and Dolatabad regions have high outdoor recreational potential. The area suitable for recreation in the output of the multicriteria evaluation method turned out to be greater than the area suggested by the landscape method, as more factors were examined in the multicriteria evaluation method. Of the set investigated, the topography and soil factors played an important role in the evaluation

    Machine Learning for the Estimation of Diameter Increment in Mixed and Uneven-Aged Forests

    Get PDF
    Estimating the diameter increment of forests is one of the most important relationships in forest management and planning. The aim of this study was to provide insight into the application of two machine learning methods, i.e., the multilayer perceptron artificial neural network (MLP) and adaptive neuro-fuzzy inference system (ANFIS), for developing diameter increment models for the Hyrcanian forests. For this purpose, the diameters at breast height (DBH) of seven tree species were recorded during two inventory periods. The trees were divided into four broad species groups, including beech (Fagus orientalis), chestnut-leaved oak (Quercus castaneifolia), hornbeam (Carpinus betulus), and other species. For each group, a separate model was developed. The k-fold strategy was used to evaluate these models. The Pearson correlation coefficient (r), coefficient of determination (R2), root mean square error (RMSE), Akaike information criterion (AIC), and Bayesian information criterion (BIC) were utilized to evaluate the models. RMSE and R2 of the MLP and ANFIS models were estimated for the four groups of beech ((1.61 and 0.23) and (1.57 and 0.26)), hornbeam ((1.42 and 0.13) and (1.49 and 0.10)), chestnut-leaved oak ((1.55 and 0.28) and (1.47 and 0.39)), and other species ((1.44 and 0.32) and (1.5 and 0.24)), respectively. Despite the low coefficient of determination, the correlation test in both techniques was significant at a 0.01 level for all four groups. In this study, we also determined optimal network parameters such as number of nodes of one or multiple hidden layers and the type of membership functions for modeling the diameter increment in the Hyrcanian forests. Comparison of the results of the two techniques showed that for the groups of beech and chestnut-leaved oak, the ANFIS technique performed better and that the modeling techniques have a deep relationship with the nature of the tree species

    Machine Learning for the Estimation of Diameter Increment in Mixed and Uneven-Aged Forests

    Get PDF
    Estimating the diameter increment of forests is one of the most important relationships in forest management and planning. The aim of this study was to provide insight into the application of two machine learning methods, i.e., the multilayer perceptron artificial neural network (MLP) and adaptive neuro-fuzzy inference system (ANFIS), for developing diameter increment models for the Hyrcanian forests. For this purpose, the diameters at breast height (DBH) of seven tree species were recorded during two inventory periods. The trees were divided into four broad species groups, including beech (Fagus orientalis), chestnut-leaved oak (Quercus castaneifolia), hornbeam (Carpinus betulus), and other species. For each group, a separate model was developed. The k-fold strategy was used to evaluate these models. The Pearson correlation coefficient (r), coefficient of determination (R2), root mean square error (RMSE), Akaike information criterion (AIC), and Bayesian information criterion (BIC) were utilized to evaluate the models. RMSE and R2 of the MLP and ANFIS models were estimated for the four groups of beech ((1.61 and 0.23) and (1.57 and 0.26)), hornbeam ((1.42 and 0.13) and (1.49 and 0.10)), chestnut-leaved oak ((1.55 and 0.28) and (1.47 and 0.39)), and other species ((1.44 and 0.32) and (1.5 and 0.24)), respectively. Despite the low coefficient of determination, the correlation test in both techniques was significant at a 0.01 level for all four groups. In this study, we also determined optimal network parameters such as number of nodes of one or multiple hidden layers and the type of membership functions for modeling the diameter increment in the Hyrcanian forests. Comparison of the results of the two techniques showed that for the groups of beech and chestnut-leaved oak, the ANFIS technique performed better and that the modeling techniques have a deep relationship with the nature of the tree species

    Projection Matrix Models : A Suitable Approach for Predicting Sustainable Growth in Uneven-Aged and Mixed Hyrcanian Forests

    Get PDF
    The Hyrcanian forests of Iran are mainly managed with the single-selection silvicultural technique. Despite significant ecological benefits associated with selection cutting, this type of forest management leads towards more challenging situations where it is difficult to maintain and practice successful forestry than in even-aged systems. Therefore, this study provides relevant management tools in the form of models to estimate low growth levels in Hyrcanian forests. In the present study, estimation of the population growth rate and then the allowable cut rate of these forests using a matrix model have been calculated in the Gorazbon district. For this purpose, the data of 256 permanent sample plots measured during the years between 2003 and 2012, as well as the data recorded about the trees harvested according to the forestry plan, have been used. As a first step, the most frequently occurring tree species were divided into four groups (beech, hornbeam, chestnut-leaved oak, and other species). Compartments of the district were divided into two groups of logged and unlogged compartments. The purpose of this division was to estimate the allowable cut and compare its volume with the volumes of observed and predicted allowable cuts obtained from forestry plans. The results showed that the total operated allowable cut (OAC) in logged compartments was more than the estimated allowable cut (EAC). In unlogged compartments, the total predicted allowable cut (PAC) was more than EAC. A comparison of EAC and OAC showed that hornbeam has been harvested more than its potential. However, chestnut-leaved oak and other species group have depicted opposite trends. Our models provide important advancements for estimating allowable cut that can enhance the goal of practicing sustainable forestry

    Antagonistic and Synergistic effects on wood deconstruction by co-fungal cultures

    No full text
    The biodegradation of wood by fungi in natural forest environment is of vital importance for carbon and nutrient replenishment. Additionally, the ecological functions, maintenance of biodiversity and fungal succession in forest ecosystems is partly dependent on the availability of utilizable organic substances. The fungal group of basidiomycetes are known to play important functional roles in these processes. There is however scarcity of information on how co-cultures of multiple fungi affect wood biomass decomposition as well as the consequent effect of interspecific interaction on niche colonization and substrate utilization. This study investigated and evaluated the role and efficiency of interspecific fungal interaction on biodegradation of Scots pine (Pinus sylvestris L), Norway spruce (Picea abies L. (H) Karst) and birch (Betula pubescens Ehrh) wood. Five fungal isolates were selected for the test in co-cultivation assay: Antrodia sinuosa P. Karst, Bjerkandera adusta (Willd.) P. Karst, Gloeophyllum sepiarium (Wulfen) P. Karst, Heterobasidion annosum (Fr.) Bref, and Phlebiopsis gigantea JĂĽlich (Basidiomycota). The results revealed that antagonistic and competitive fungal interaction does not largely appear to speed up wood decay process. However, the rare combination of Phlebiopsis, Antrodia and Gloeophyllum had significant positive effect on degradation of spruce wood whereas Heterobasidion, Phlebiopsis, and Gloeophyllum had synergistic effect on pine wood decay. It is therefore likely that in nature, wood decay by fungi is mostly facilitated by parallel niche colonization and by fungal succession

    Projection Matrix Models: A Suitable Approach for Predicting Sustainable Growth in Uneven-Aged and Mixed Hyrcanian Forests

    No full text
    The Hyrcanian forests of Iran are mainly managed with the single-selection silvicultural technique. Despite significant ecological benefits associated with selection cutting, this type of forest management leads towards more challenging situations where it is difficult to maintain and practice successful forestry than in even-aged systems. Therefore, this study provides relevant management tools in the form of models to estimate low growth levels in Hyrcanian forests. In the present study, estimation of the population growth rate and then the allowable cut rate of these forests using a matrix model have been calculated in the Gorazbon district. For this purpose, the data of 256 permanent sample plots measured during the years between 2003 and 2012, as well as the data recorded about the trees harvested according to the forestry plan, have been used. As a first step, the most frequently occurring tree species were divided into four groups (beech, hornbeam, chestnut-leaved oak, and other species). Compartments of the district were divided into two groups of logged and unlogged compartments. The purpose of this division was to estimate the allowable cut and compare its volume with the volumes of observed and predicted allowable cuts obtained from forestry plans. The results showed that the total operated allowable cut (OAC) in logged compartments was more than the estimated allowable cut (EAC). In unlogged compartments, the total predicted allowable cut (PAC) was more than EAC. A comparison of EAC and OAC showed that hornbeam has been harvested more than its potential. However, chestnut-leaved oak and other species group have depicted opposite trends. Our models provide important advancements for estimating allowable cut that can enhance the goal of practicing sustainable forestry

    An ethnobotanical study of medicinal plants used to treat skin diseases in northern Pakistan

    No full text
    corecore