24,042 research outputs found

    Quantum fluctuations in the spiral phase of the Hubbard model

    Full text link
    We study the magnetic excitations in the spiral phase of the two--dimensional Hubbard model using a functional integral method. Spin waves are strongly renormalized and a line of near--zeros is observed in the spectrum around the spiral pitch ±Q\pm{\bf Q}. The possibility of disordered spiral states is examined by studying the one--loop corrections to the spiral order parameter. We also show that the spiral phase presents an intrinsic instability towards an inhomogeneous state (phase separation, CDW, ...) at weak doping. Though phase separation is suppressed by weak long--range Coulomb interactions, the CDW instability only disappears for sufficiently strong Coulomb interaction.Comment: Figures are NOW appended via uuencoded postscript fil

    Higher-order Stationary Phase Approximations in Semiclassical Scattering

    Get PDF
    Stationary phase approximations on differential cross section expansion for elastic particle scattering mechanic

    Hybrid Superconductor-Quantum Point Contact Devices using InSb Nanowires

    Get PDF
    Proposals for studying topological superconductivity and Majorana bound states in nanowires proximity coupled to superconductors require that transport in the nanowire is ballistic. Previous work on hybrid nanowire-superconductor systems has shown evidence for Majorana bound states, but these experiments were also marked by disorder, which disrupts ballistic transport. In this letter, we demonstrate ballistic transport in InSb nanowires interfaced directly with superconducting Al by observing quantized conductance at zero-magnetic field. Additionally, we demonstrate that the nanowire is proximity coupled to the superconducting contacts by observing Andreev reflection. These results are important steps for robustly establishing topological superconductivity in InSb nanowires

    One- and two-particle microrheology

    Full text link
    We study the dynamics of rigid spheres embedded in viscoelastic media and address two questions of importance to microrheology. First we calculate the complete response to an external force of a single bead in a homogeneous elastic network viscously coupled to an incompressible fluid. From this response function we find the frequency range where the standard assumptions of microrheology are valid. Second we study fluctuations when embedded spheres perturb the media around them and show that mutual fluctuations of two separated spheres provide a more accurate determination of the complex shear modulus than do the fluctuations of a single sphere.Comment: 4 pages, 1 figur
    corecore