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HIGHER-ORDER STATIONARY PHASE APPROXIMATIONS
IN SEMICLASSICAL SCATTERING*

T

Francis J. Smith, E.A. Mason, and J.T. Vanderslice

Institute for Molecular Physics, University of Maryland

College Park, Maryland

ABSTRACT 2) % #V\

Higher-order stationary phase approximations are used
to calculate corrections to the classical expression for the
differential cross section for elastic scattering. An expansion
for the cross section as a series in"n2 is obtained, whose first
term is the classical result. An oscillating term is also present,
whose "wavelength'" is approximately A6 = 2n/kb. Both the
"wavelength" and the amplitude of this term vary as h. It is
shown that the classical differential cross section is valid for
angles as small as the critical angle defined by Massey and Mohr.

A similar technique is used to obtain corrections to
Ford and Wheeler's semiclassical expression for the differential

cross section at a rainbow angle. An expansion as a series

* Supported in part by the National Aeronautics and Space
Administration (Grant NsG-5-59).

1 On leave from the Department of Applied Mathematics,
The Queen's University of Belfast, Northern Ireland.
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in 14/° is derived, whose first term varies as 41 and
hence diverges in the classical 1limit. It is shown that
the leading term agrees with Ford and Wheeler's result, and

that the first correction term is very small for a 12-6

potential. "UTTﬁerrl_




I. INTRODUCTION

The classical expression for the differential cross
section for elastic scattering of heavy particles is known
to be invalid at small angles.1 The usual criterion for the
validity of the classical theory, as given by Massey and Mohr,l’2

is that the deflection angle 6 should be greater than a critical

angle 6 _, given by
~ : (D
8 ~ 7m/kr ,

where k is the wave number of the relative motion and r,

is the distance of closest approach. More recently it has been
shown that the classical description can also be inaccurate at
large angles. Ford and Wheeler3 have found such inaccuracies
in the vicinity of rainbow angles; Munn, Mason, and Smith4 have
found that the quantal differential cross section oscillates
about the classical cross section at angles greater than GC.

This paper has two objectives. One is to find an
accurate criterion for the prediction of the angle at which
deviations from the classical approximation become important; in
other words, to give a more quantitative result than the Massey-
Mohr value of Gc. A second objective is to try to reproduce
some of the other quantal results with a semiclassical approximation.
The mathematical procedure by which both objectives are approached
is the stationary phase approximation carried to higher orders.
The first objective has already been discussed in detail in a

previous paper,5 using some of the present results without




discussion of the mathematical steps involved. Hence the
present paper can be limited to an outline of the mathematical
procedure as far as the first objective is concerned.

In the quantum theory the differential cross section
0(68) for scattering by a central force is given as the

square of the scattering amplitude f(8),

ce) = |2 | 2, (2
£f(0) = (2ik)’1 % (24+1) [exp(zi%)-lj Pz(cos 0) 3)

where 5z is the phase shift for angular momentum quantum

number £, k is the wave number, and Pz(cos f) is a Legendre
polynomial of order / in cos 6. There are three distinct

parts to a semiclassical approximation for oc(6), as discussed
by Ford and Wheeler.3 The JWKB approximation is used for 6£;
asymptotic formulas are used for Pg(cos 6) ; and the summation
in Eq.(3) is replaced by an integration. An additional approx-
imation may be to evaluate the resulting integral by some
procedure like the method of stationary phase.3 The asymptotic

expressions for Pe(cos 0) are

P, (cos 6) = J_ [(£'+ 22, 9] for sin 6 1/4, (4a)

Pﬂ(cos 9)2:[%7T (L+ %) sin 6] -3 sin [(£+%)9+%ﬂ]

for sin 6> 1/4. (4b)



In previous work on semiclassical scattering for angles greater
than Gc, the second of these expressions for Pzicos ) was used
for all values of ¢ and the resulting integral expression for f(8)
was evaluated by the lowest order stationary phase approximation,
This yielded the classical differential cross section.
In this paper Pz(cos f) is correctly approximated for
all values of / and the resulting integrals are evaluated with
higher—-order stationary phase approximations. This gives rise
to three corrections to the classical differential cross section,.
The first is a small non-oscillating term which falls off
monotonically as 6 grows larger than Gc. This arises from the
use of higher-order stationary phase approximations at the
point of stationary phase. The second is a larger oscillatory
term which arises from the contribution at small values of £,
and the third is another non-oscillatory term from small £ values.
These corrections are discussed separately in the following section.
In the last section the higher-order stationary phase
approximations are applied to rainbow angle scattering. A rainbow
angle is a special case because its point of stationary phase is
stationary to a higher order of derivative than at an ordinary

scattering angle.

I1. HIGHER-ORDER STATIONARY PHASE APPROXIMATIONS

The application of the stationary phase approximation to
physical problems is seldom carried beyond the lowest order of

. . 6 . . .
approximation,. However, a general asymptotic series expansion



has been given by Erdélyi7 (who quotes earlier references). It

is applicable to integrals of the form

B
1= f g(t) (t- oc)x—l(ﬁ‘ 2 el exp [ ix h(t)] dt, (5)
o
in which all the variables are real, o t{ B, A>0, ug1l, and

the functions g(t) and h{(t) are differentiable. The function

h(t) is also assumed to be monotonically increasing froma to fB.
Erdélyi shows that in the 1limit as the scale parameter x
approaches infinity the integral can be expressed as an asymptotic

series of which the first N terms are given by

= By - Ay 6)

where
N-1 (n)
A = - HE_ (0) I—v(n+x) « @) /p [ﬂl(n+k) exp[ixh(a)] ’

n=0 D!C

By = - s 2™ oy r(ngg) x~ () fo o [_ E}é%i&l] exp [ixh(ﬁ)],

and

u? = n(t) - h(a), v’ = n(p) -h(t),

k() =g () ul™ 4, 1 =g (OvTH L

A-1

g, (0 = g®) -1 -0k,

The integers p and o are equal to one plus the orders of the

stationary points at a and B, respectively. The order of a



stationary point is just a number one less than the order of the
first non-vanishing derivative of h(t) at that point. An ordinary
point is a stationary point of order zero; the usual stationary
phase approximation corresponds to a stationary point of order
one; rainbow angle scattering corresponds to a stationary point

of order two.

The approximation used in previous work on the
differential cross section was limited to the first term of this
series (N =1). Higher terms are more complicated to calculate
because of the necessity of calculating the higher derivétives
k(n)(u) and E(n)(v) as functions of u and v. Several more terms
are used in the following discussion, but first the zero-order
approximation is described. For simplicity the discussion is
limited to monotonic potentials, not because non-monotonic
potentials present any greater difficulty in principle, but
because the mathematical analysis for monotonic potentials is less
laborious. Only repulsive potentials are considered; attractive
potentials can be treated in exactly the same manner. Explicit

results are obtained for the inverse power and exponential potentials,

A, Zero-Order Approximation

Before replacing the summation in (3) by an integral we
first note that 2(2£+1)Pz(cos 6) =0. We also assume at this stage
that 6 1is large enough that there are few phase shifts between O
and 1/6 , so that the approximation for Pﬂ(cos ) valid for

£>1/6 can be used for all values of 4. It follows that f(9)




becomes

£(8) = -(27 sin@/k)—% a+- 1 , 7

where
o0

* =f g? exp[i(Zéi,BkGi' iw)] ag ,
0

the variable of integration having been changed from £ to
B = (L+3)/k. For a repulsive potential I+ has no stationary
phase point of order higher than zero, and I~ has one stationary
point of order one when 6 = (2/k) (dd/dB) = Z(déz/dﬂ). In previous
calculations of these integrals contributions from the end
points were neglected and it was assumed that the only contribution
to £(0) arose from the stationary phase point of order one in I .
This contribution was evaluated by the lowest-order stationary

phase approximation (N=1) of (6), and the result is

B ag
sin 6 df

GC,B(G) = ) (8)

B=b

where b, the classical impact parameter, is the value of S at the

stationary phase point of I .

B. Higher-Order Approximations

Because of the difficulty of eliminating the apparent
singularities at B =« in it and I~, it is convenient to replace
the summation in (3) by an integration without setting

Z(2£4-1)P£(cos ©) =0. The scattering amplitude f(0) then becomes




£f(6) = (21 sin e/k)'% (Ile’iﬂ/4— I e"‘m/4 ),

2

where
o0

1, =\/\ [eZié(ﬁ)_]:] o~ 1KB6 B% as,

o

1, =\/‘ [eZié(B)__IJ o 1KRO 55 as.
0

We consider first the integral I, because it contains no stat-

2
ionary point of order higher than zero.
The integral 12 is conveniently written in the form
. y 2i8(B)+1ikpo 3} y ikpe .3
IZ:?ﬁigg [p/\e B2dp —L/\e B2dp | . (10)
0

Because both [26(ﬁ)+-k36] and kB6 are increasing functions of B
between 0 and vy, the two integrals in (10) can be directly
evaluated by the asymptotic expansion in (6). There are two
contributions, one from the point 3= 0 and the other from S8 =1,
We first consider the point at B=¥7 and show that it makes no
contribution. The point at =0 requires a special discussion,
which we defer to Sec.IID, because the Bessel function approx-
imation for Pz cos(0) needs to be used there. In other words we

first consider only the BN part of 1 The first term is

9

(11)
k(9+97) k6

I.,: B,= 1linm

1 . . 1 .
iy e216(7)+1k79 in? o 1KYO
2" 71 v 5w ’




where 97 ==(2/k)(d6/dﬁ)ﬁ=7 . In the limit asy —» =, hoth
oY) —> 0 and 97—-)0 for any potential that falls to zero
as r — o« , It follows that Bl==0 for 12. If higher terms in
the expansion are also used, they too can be shown to be zero
in the limit Y —> . Thus By = 0 for I,. This is a physically
plausible result, stating that collisions with infinitely
great impact parameters cannot affect the scattering amplitude.
A similar procedure can be used in the elimination of
the apparent singularity at B = « in Il’ but some preliminary
manipulation is required to put the integral into the standard
form of Eq.(5). The integral is first written in the form

v v
I, = lim [f Q210B)-1KkpE 3 ) fe‘ikﬁeﬁ% d,B]. (12)
0

V>

The first integral must be split into two parts at the first-

order stationary phase point at 5 = b, and the integration variable

changed so that h(t) is monotonically increasing in both parts.
A similar variable change must be made in the second integral

in (12). On substituting A= -{ , we obtain

-b
I, = lin [fb o210 (B)-ikpo /3% a8 +f e216(-1§)+ik§6(_0%dc

'Y""—>°° 0 -y
0 -
-f e1KCO (Lpyd dC] . (13)
-y

As before we postpone the discussion of the contributions at

B=0and =0 to Sec.IID. The contribution from = -y is again




zero in the limit v — =, The only other contribution to I1

comes from the first two integrals in (13) at S = b and { = -

These can be evaluated from Eq.(16), a straightforward but teqdious

process. The result out to five terms in the series is

. A .
£6) =i [0 1] 3.1 [25(b>-kb9][1 | EU7ZIN
¢ (k61)
A . A . A _
2 —17T/2 3 "3171'//4 4 -1
+ e + e + —¢ € +
(k6" (ke')3;2 (k@')z

(14)

where Gcl(e) is the classical differential cross section in (8),
gt = (dG/dB%%=b, and the odd-numbered coefficients Al’ A3, etc.
are identically zero because the contributions to them from the

two sides of the stationary point cancel. Since k is inversely

proportional to Planck's constant, Eq.(14) is a series in ascending

1
powers of 1?2 with the odd powers missing. The even-numbered

non-zero coefficients are

o
!

- (1/8b2) [bz(e"'/e')-g b2 (6"/61) 2+ 2b(6"/6") + 1] :

a, =-(/8ph [ 1 vte%/0n - & ve™V/en) (0v/6")

4
- _2_§ b (enl/e') " 35 b (9"'/6')(9"/6')2 ?_22 4(9?!/91)
+ 26301 0n- 32 w3 even) (om0 + 33 P omen?
- _g_ b (vayev)+35 b (9"/9') b(en/e!) + _%g] R
where 6" = (d26/d52%=,b , etc.
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When f(P) is squared, the final series for ¢(8) is in
powers of k_z or ﬁz, because the non-zero terms in f(8) are

alternately real and imaginary. The result is

0(8) /0 (®) =1+ (2kb?0) 2| 2 pte¥/0")- T vt (61V/6") (6770

- % b (6"'/9')2 25 b (9“'/9')(9“/9')2 5 4(9"/9')
+ % b3 (e1V/61) - g b (6"/6") (67/6") + 2 > p3(em/em)3
-1 w2een + 3 262 S vense) + 1 ]

Y (15)

This result was quoted from our work by Mason, Vanderslice, and

Raw.5

C. Results for the Inverse Power and Exponential Potentials

Two of the most common monotonic potentials are the
inverse power potential, V(r) = K/r°, where K and s are positive
constants, and the exponential potential, V(r) = Ae” %", where A
and a are positive coﬁstants. If we restrict ourselves to small-

angle scattering, we can find 6 as an explicit function of b for

both these potentials. For the inverse power potential we find8
o = KC_ / Eb°, (16)

where E is the relative kinetic energy and

-2 rGse ) /Ts).
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For the exponential potential we finds’9

6 = (A/E) (ab) K, (ab), (17)

where Ko(ab) is the zero-order modified Bessel function of the
second kind.

On substituting these results into Eq. (15), we obtain

66) /0 ,©) =1 + (2kbO) %4 .-, (18)

0(8)/0,,©) =1 - (@b/3) (2kh6) 24 --- | (19)
for the inverse power and exponential potentials, respectively.
It is surprising that the result does not depend on the potential
parameter s of the inverse power potential, but does depend on
the parameter a of the exponential. Furthermore, the sign of the
correction term is different for the two cases. As previously
shown,5 the correction amounts to about 2.5% at Gc for He-He
collisions at E = 250 eV. This correction happens to be small
because of cancellation between the terms of f(6), and not because
the individual correction terms in f(f) are small. Higher terms
in the expansions of (18) and (19) are not significant since higher
terms in the asymptotic expansion (4b) for the Legendre polynomials

are estimated to be of larger magnitude than these.5

D. Correction for Small Angular Momentum Collisions

We now consider the correction that must be included in a
complete semiclassical analysis to take account of the asymptotic

form of Pz(cos f) for small angular momenta, namely
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Pg(cos 9)£=JO(E9) for £6{ 1. To do this we write the semiclassical

expression for f(6) as
1/k6 .
£@ = an [ [PO 1] 5 keorsas
0

+ (k/i)\/\ [eZié(B) —1] Pz(cos 6) pd g. (20)
1/k6

Using the same procedure as that adopted in the previous discussion,
we replace the lLegendre polynomial Pﬂ(qos f) in the second integral
by its asymptotic expansion (4b) for £6>1 and can then show

that the contribution from 8 =x is zero. The only other
contribution besides that giving rise to the classical differential
cross section at 8 = b comes from the end point at g=1/k6,

Writing out explicitly the contribution from f=Db as found

previously, we can reduce Eq.(20) to

1 ; _ A A
£(0) =i [ocl(e)] 3 e1[26(b) kb6 ] [1-—1 kg' —(k:’)z + o.:] +

+ I,+1,-I,-I, , (21)
where the first part is the contribution from f=Db given in
Eq. (14), and

1/k6 .
L= [ PO g wpersas,
0

=i
]

(k/1) f o216 () P,(cos 6)pd B,
1/k6

b
]



i3

1/k6
(k/1) f J (kp6)p d g,
0

b=t
]

=
]

4 (k/i)f Pz(cose)BdB.
1/k6

Using the stationary phase approximation to any order
we can readily show that the contributions to I1 and 12 from
B =1/k6 should cancel to within the order of accuracy of Eq. (4),
since Pﬂ(cos 6) =~ Jo(k569)’at B=1/k6 or £6=1, and the point
B =1/k6 is a point of order zero. The contribution to 11 at
B =0 can also be straightforwardly determined by the stationary

phase method. The total contribution of I, and I, is thus

1 2

I, + I, = (i/kﬂz) e216(0)+ cee (22)

1

The same procedure can be used on I, and I, if Jo(kﬁé9) and
Pz(cos 8) can be written in imaginary exponential notation.
This is accomplished for Pz(cos 6) by using the approximation
(4b) and then writing the sine function in exponential form.
Examination of the series expansion for Jo(x) shows that the

following approximation is quite accurate for xg’l:

Jo(x)53 cos (x/AV2). (23)

Writing the cosine in exponential form, we see that the

and I, from f= 1/k6 cancel within the order

contributions to 13 4

of accuracy of Egs.(4) and (23). The remaining contribution is

I+ 1, = (k/21) [f IKRONZ 5y g +f e~ 1KRO/T 2 ;3d,sJ . (20)
0 0
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These integrals are readily evaluated by the stationary phase

method, giving

e 2
g+ I, = 2i/k6°, (25)

I
which is correct to all orders, the higher terms being identically
zero.

For small-angle scattering the contribution from 11"*12
is much smaller than that from 134-14 and can be neglected.
Combining Egs. (21) and (25) we obtain

. A :
£(0) = 1 [o,,(0) ]2 (H(20(D)-KDE] [1-—1 o+ ---] # 2 (26
ko

so that the final result is

2
(A57-24) -4 ] 4
0(0) =6 .| 1+———— + 0k )+ | + —5—=5 +
cl [ (x6") 2 (k62) 2
4 N (A22'2A4) -4 2
(27)
where
» = 256(b) - kbé, (28)
A A -1
2 -3 4 -4
tan ¢_ = - + Ok )+ «-- 1 - + O(k D+ .- .
° [ET ][ (x0')? ]
(29)

The first term in brackets in Eq. (27) is the contribution
from B = Db, and is the same as given by Eq.(15). Neither A2 nor

A, is individually small, but the combination (A22—2A4) is
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fortuitously very small, at least for inverse power and exponential
repulsive potentials. The next term, 4/(k92)2, is a non-oscillatory
correction term arising from B8 = 0; it is of the same order in #H

as the correction arising from 8= b, The magnitudes of these

two non-oscillatory corrections are most easily compared for

small-angle scattering by an inverse power potential, for which

.2, 2
001(9) = b“/s6”. (30)
For this case Eq. (27) can therefore be written as

0(8) /0 1 () =1 + (2kb8) ™2 4+ (168) (2kb6) 2 4 - -
+ oscillatory term, (31)

and the non-oscillatory quantum correction from S = 0 is seen
to be much larger than the one from S = b. A similar result

holds for the exponential potential, for which

001 (0) = b2/abe? (32)
JOVINGOR 1-(ab/12) (kb8) 2 + (4ab) (kb6) 2 + ---
+ oscillatory term. (33)

The large magnitude of the non-oscillatory correction from 8= 0 is
due entirely to the use of the Jo approximation for PE given in
Eq.(4a); if the approximation (4b) had been used, the correction

would have been zero.
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E. Numerical Calculations

It is of interest to compare the present results with
other approximations and with exact calculations for different
molecular models. The present results are not expected to be
good at very small angles, where a classical description breaks‘
down completely. A different semiclaésical approximation than
the method of stationary phase can be used to obtain an expression
for o(0) valid at very small angles.5 For inverse power potentials

this expression is

2
2402
o (6) =(§—ﬂs—> [1 + tan? (57:_1)] exp [— ﬂ%ﬁs—e——:’ ) (34)

)
where S is the total scattering cross section and f(s) is a
numerical constant of magnitude unity.

A number of quantum scattering phenomena were first noticed
by Massey and Mohrz in their study of rigid sphere scattering, and
we therefore consider this case first. For rigid spheres of

2 S = 2ﬂ02 and the classical

differential cross sectionisSOél(G) = 02/4. Substituting these

diameter 0, the total cross section is

results into Eq.(34) and passing to the limit s — «», for which

f(s) —>» 1, we find the small-angle result
2 2
0(9)/061(6) = (ko) “ exp [— (ko6/2) ] . (35)

The classical deflection angle for rigid spheres is8 cos(6/2)=b /0.
Using this result and the semiclassical equivalence formula

6 = (2/k) (d6/dp) we obtain ¢ = -2ko sin (6/2). The present

p=b ’
semiclassical formula of Eq.(27) can then be written to sufficient
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accuracy for rigid spheres as
2,2 2 .
6(6)/0_,(8) =1 + (4/k06%) %+ (8/k06%) cos [ 2ko sin(6/2)] . (36)

Numerical results from Eq. (35) and (36) are shown in Fig. 1 for
the case ko = 20, for which Gc = 0,157 according to Eq. (1).
Although the two results do not overlap, they come fairly near

to each other. The value of Qc predicted from Eq. (1) is seen

to give a fair prediction of the angle above which the classical
result is accurate in an average sense. The oscillations in the
curve are in qualitative agreement with the exact results, as can
be seen by comparison of Fig. 1 with Massey and Mohr's
corresponding figure (also reproduced in reference 1, p.39), but
do not damp out fast enough at larger angles.

The semiclassical formula of Eq.(27) can also be compared
with the quantum calculations by Munn, Mason, and Smith4 for the
potential V(r) = 4e(o/r)12 at an energy E/c =45, and for the de Boer
parameter A¥*= h/c(Zpe)% having values of 0.50 and 2.67. These
energy and parameter values are equivalent to ko= 84,30 and
ko= 15.79, respectively. To check the accuracy of the JWKB
approximation in such cases the JWKB and quantum cross sections
were also compared. The JWKB phase shifts and the classical
deflbction angles were evaluated by Gauss-Mehler quadratures.lo
The JWKB and quantum differential cross sections agree very well
for A¥ = 0.50, but not so well for A*= 2,67, as shown in Figs. 2
and 3. The small-angle result of Eq.(34) was calculated with the

exact value of S.4 The exact value of ocl(e) was also used,10
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but for A*¥= 0,50 the correction terms of Eq.{(27) were calculated

with smail-angle approximations, for which

$ = - SkbO (37)

s~1

A2' - 252+7s+2
G skbo (38)

Within the accuracy of these approximations it is also reasonable

2

to take A2 = 2A so that Eq.(37) becomes

4’

1
0(6) ~ 0 (6) + (;32—)2 +(£—2-> [0,,¢0]" cos(essy), (39)
with ¢+JP025-kbG when s =12, This same formula was used for

A* = 2,67, but with o+ ¢02;25(b)—kb9 because these calculations
extend to large angles. The results are shown in Figs. 2 and 3,
where it can be seen that the small-angle result of Eq.(34) is
remarkably accurate out to Gc, but that the nearly classical result
of Eq.(39) gives only a qualitative representation of the exact
calculations. In particular, the oscillations of Eq. (39) are

not sufficiently damped as & increases. It should also be

remarked in passing that Gc from Eq. (1) gives an accurate

prediction of the angle above which 001(8) is accurate in an average
sense, and that Gc is nearly the angle at which the small-angle

formula (34) intersects 001(9) for the second time.4
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I1I. APPROXIMATIONS AT A RAINBOW ANGLE

When the potential contains a minimum, a classical plot
of 6 against b will also show a minimum, so that d6/db = 0.
According to the classical formula (8), there is a singularity in
ocl(e) at this minimum angle.11 Semiclassically, at such a point
dzé/dﬁz is zero and hence the stationary phase point is of order
two rather than one. This means that the zero-order approximation
leading to the classical formula (8) is inherently incorrect, since
it is based on the assumption that the stationary point is of order
one. The angle at which this occurs has been called by Ford
and Wheeler3 the rainbow angle, Gr, on the basis of the optical
analogy. Ford and Wheeler have used a semiclassical approximation,
without recourse to‘the method of stationary phase, to discuss the
behavior of 0(8) in the vicinity of Gr. It is thus of in&erest
to calculate O(Qr) by the method of stationary phase for comparison
with the Ford and Wheeler approximation.

We consider just the contribution from the stationary
point and ignore the contributions from the origin, which can be
added on at the end by the method given in Sec.IID. As before,
there is no contribution from the limit at infinity. We have thus
to evaluate the integrals

b
- '3 —_ 1
£(6) = (27 sinb/k) 3 [f o210 (B) -1kpo st ap s

+f (210 (B)-1KB0 3 dﬁ] . (40
b
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The application of Eq. (16) is again straightforward but tedious,

and yields
2 k ’ @r-m/0)| __B
= -2 i(pr-Ty 1 T -
£6) 3(27T Sin 0 e N s v °°S(e)
by (k@r)
B B B
. 2 . /er) 3 3w) . 4 ., (47r>
-i sin + w—CoS |} -1i sin (%) + *°°
(ke")z 3 \6 (ksr) (6 (ke")4 3 6
r Ir

(41)

= _ "o 2 2 .
where ¢r = 25(br) k prer, er = (d Q/dB’%=ubr, and the sines
and cosines have been written explicitly to show how every third

term vanishes instead of every second term as at a first-order

stationary point. This is a series in ﬁ1/3

term missing, starting as h_1/6, ﬁl/s, T

with every third

The foregoing formula has only limited application;
it is valid just at the rainbow angle er and gives no information
about f(6) or 0(®) on either the bright or the shadow side of Gr.
Its main function would be to check the accuracy of other rainbow
approximations, and so only the first two coefficients have been

evaluated explicitly:

B,

- 2br% (372) /3 razs),
- 2/3 1t "
B, = - 2b, 3 (3/2) [7(2/3) [(br/3) (6, /6. ) - 1] .

Since the terms in Eq. (41) for f(er) are alternately real and

imaginary, the final series for G(Gr) is in powers of'ﬁ2/3,

starting as h—1/3, hl/s, -++ , as follows:
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1/3 2 »
oy P [ra/s] %, | /23 [F(z/s)]z [31_‘ (er ) ) 1] 2
3

11 T b [T
T x sine (kg3 b2ee 273 (TA7D) e

r
+ o b (42)

This expression may be compared with Ford and Wheeler's result,
Rather than keep a general expression for 6(B) or 6(B) and
evaluate the integral approximately, Ford and Wheeler use an
approximate expression for §(B8) or 6(B) and evaluate the integral
exactly. The approximate expression is obtained by expanding
©(R) in a Taylor series about the rainbow point and dropping the

terms beyond the quadratic,
= " _ 2
6(p) =6+ % 6. (8 b)* | (43)

The integral over 3 then becomes an Airy integral whose

argument is [q~1/3(9r-é9)] , where q = 9;/2k2. We therefore

expect that our result with all higher derivatives of Gr set to

zero should be an asymptotic series representation of Ford and

Wheeler's result at exactly the rainbow angle. The first term

of Eq.(42) does in fact agree with Ford and Wheeler, who quote

only the first term of the appropriate series for the Airy function.
To check the magnitudes of the correction terms, we use the

example of K" scattered by Ar at a relative energy of 0.17 eV,

discussed by Ford and Wheeler in terms of the Lennard-Jones (12-6)

potential. If we use the parameters given by Ford and Wheeler and

e

take Gr =0, we find the ratio of the second to the first term of
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114

/9:) is about 15 to 25, so

that the ratio is raised to a little less than 10-2. Thus the

the (12-6) potential we find that br(er
neglect of higher derivatives of € is more serious than neglect

of higher terms in the series for the Airy function, but neither

is very important at the rainbow angle, and the first approximation
given by Ford and Wheeler is entirely adequate. Unfortunately,

the Ford and Wheeler approximation is not so accurate farther

away from Gr’ because of the inadequacy of a quadratic representation
of 6(B), and does not give the angular locations of the

oscillations on the bright side of the rainbow (the supernumerary
rainbowsls) with sufficient accuracy for the quantitative inter-
pretation of molecular beam scattering experiments. Accurate
expressions could be obtained through the Ford and Wheeler procedure
by keeping more terms in the Taylor expansion of 8(B). However,

the necessary numerical computations are so involved that 1t is
probably both easier and more accurate to go back to the original
formulation, calculate phase shifts by the JWKB approximation, and

integrate over /£ or 8 by numerical techniques,
IV. DISCUSSION

In summary, the main contribution to f(6) in the
stationary phase approximation comes from the point of stationary
phase of order one or higher. There is no contribution from the
point of order zero at infinity, but there is a contribution from
the point of order zero at the origin. The contribution from the

origin and from the higher-order terms at the stationary point
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lead to quantum corrections to 001(9) which vanish at large angles
as 9—4. The interference between the contributions from the
stationary point and from the origin adds an oscillatory term to

ocl(e), whose "wavelength'" is approximately

A6 =2n/kb, (44)
and whose amplitude is of order of magnitude

Ac/oclz(kocl% 62y~1, (45)

This oscillatory term is in only qualitative agreement with accurate
quantum calculations, and it may be conjectured that the convergence
of the higher-order stationary phase asymptotic series is not

very good. The convergence for 0(f) seems to be better than for
f(0), due partly to an apparently fortuitous near cancellation of
higher termns,

In contrast, the small-angle result obtained by Mason,
Vanderslice, and Raw is surprisingly accurate, and leads to a
precise prediction of Qc which is in good agreement with the Massey-
Mohr value.

It is interesting to investigate the convergence of the
stationary phase asymptotic series as the system approaches the
classical limit, especially at a rainbow angle. Classical behavior
is approached by letting k become large; this can be thought of
either as the mass of the system increasing, or as the value of T
decreasing. For non-rainbow scattering the non-oscillatory quantum

terms vanish as k"2 or ﬁz. The oscillatory term changes both in
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amplitude and "wavelength" as k'-1 or H; classical behavior is
approached by the oscillations becoming more numerous and decreasing
in amplitude. The decrease in wavelength means that any attempt

to follow such oscillations in detail by accurate quantal or

JWKB phase-shift calculations may meet severe numerical difficulties
because of large numbers of oscillations. For rainbow scattering
every term of the series involves k or H, the series going as

-2/3 2/3 1/3 or %1/3

k or © with the first term being of order k
This means there is no proper classical limit, since the leading
term diverges as classical behavior is approached, even though
the higher terms vanish. From this point of view it is not
surprising that quantum effects are observable in molecular-beam
scattering near a rainbow angle, although the scattering may be

classical almost everywhere else.
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FIGURE CAPTIONS

Differential cross section for scattering by
rigid sphere for ko=20., Curve A is from

Eq. (35) and curve B from Eq. (36).

Differential cross section for scattering by
inverse 12th power repulsive potential,

¢(r)==4€(0/r)12, with E£ = 45 and A* = 0,50,
corresponding to ko= 84.30. The heavy curve
is the exact quantal result, which is indis-
tinguishable from the JWKB result. Curve A

is from Eq. (34) and curve B from Eq.(39).

Differential cross section for scattering as

Fig. 2, but with A* = 2.67, corresponding to
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an

in

ko = 15.79., The heavy dashed curve is the JWKB

result, which differs appreciably from the exact

quantal result.
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