1,951 research outputs found

    Potential impact of reactive vaccination in controlling cholera outbreaks: An exploratory analysis using a Zimbabwean experience

    Get PDF
    Background. To contain ongoing cholera outbreaks, the World Health Organization has suggested that reactive vaccination should be considered in addition to its previous control measures. Objectives. To explore the potential impact of a hypothetical reactive oral cholera vaccination using the example of the recent large-scale cholera outbreak in Zimbabwe. Methods. This was a retrospective cost-effectiveness analysis calculating the health and economic burden of the cholera outbreak in Zimbabwe with and without reactive vaccination. The primary outcome measure was incremental cost per disability-adjusted life year (DALY) averted. Results. Under the base-case assumptions (assuming 50% coverage among individuals aged ≥2 years), reactive vaccination could have averted 1 320 deaths and 23 650 DALYs. Considering herd immunity, the corresponding values would have been 2 920 deaths and 52 360 DALYs averted. The total vaccination costs would have been ~74millionand 74 million and ~21 million, respectively, with per-dose vaccine price of US5and5 and 1. The incremental costs per DALY averted of reactive vaccination were 2770and2 770 and 370, respectively, for vaccine price set at 5and5 and 1. Assuming herd immunity, the corresponding cost was 980withvaccinepriceof980 with vaccine price of 5, and the programme was cost-saving with a vaccine price of $1. Results were most sensitive to case-fatality rate, per-dose vaccine price, and the size of the outbreak. Conclusions. Reactive vaccination has the potential to be a costeffective measure to contain cholera outbreaks in countries at high risk. However, the feasibility of implementation should be further evaluated, and caution is warranted in extrapolating the findings to different settings in the absence of other in-depth studies

    A Generalization of the Goldberg-Sachs Theorem and its Consequences

    Full text link
    The Goldberg-Sachs theorem is generalized for all four-dimensional manifolds endowed with torsion-free connection compatible with the metric, the treatment includes all signatures as well as complex manifolds. It is shown that when the Weyl tensor is algebraically special severe geometric restrictions are imposed. In particular it is demonstrated that the simple self-dual eigenbivectors of the Weyl tensor generate integrable isotropic planes. Another result obtained here is that if the self-dual part of the Weyl tensor vanishes in a Ricci-flat manifold of (2,2) signature the manifold must be Calabi-Yau or symplectic and admits a solution for the source-free Einstein-Maxwell equations.Comment: 14 pages. This version matches the published on

    The effect of felt compression on the performance and pressure drop of all-vanadium redox flow batteries

    Get PDF
    The compression of carbon felt electrodes for redox flow batteries leads to changes in the electrochemical performance and has a large effect on the pressure drop of electrolyte flow through the system. In this investigation, the authors have characterised the electrochemical performance of all-vanadium redox flow batteries by studying the effect of compression on the contact resistance, polarisation behaviour and efficiency. Contact resistance was seen to reduce from ca. 2.0 Ω cm2 to 1.2 Ω cm2 and an energy efficiency of 85% was obtained from a felt compressed to 75%. Moreover, X-ray computed tomography (CT) has been employed to study the microstructure of felt electrodes at compressions up to 70%, showing a linear decrease in porosity and a constant fibre surface area-to-volume ratio. The pressure drop was modelled using computational fluid dynamics and employing the 3D structure of the felts obtained from CT, revealing that a 60% increase in compression related to a 44.5% increase in pressure drop

    Investigating the effect of thermal gradients on stress in solid oxide fuel cell anodes using combined synchrotron radiation and thermal imaging

    Get PDF
    Thermal gradients can arise within solid oxide fuel cells (SOFCs) due to start-up and shut-down, non-uniform gas distribution, fast cycling and operation under internal reforming conditions. Here, the effects of operationally relevant thermal gradients on Ni/YSZ SOFC anode half cells are investigated using combined synchrotron X-ray diffraction and thermal imaging. The combination of these techniques has identified significant deviation from linear thermal expansion behaviour in a sample exposed to a one dimensional thermal gradient. Stress gradients are identified along isothermal regions due to the presence of a proximate thermal gradient, with tensile stress deviations of up to 75Â MPa being observed across the sample at a constant temperature. Significant strain is also observed due to the presence of thermal gradients when compared to work carried out at isothermal conditions

    Measurement of water uptake in thin-film Nafion and anion alkaline exchange membranes using the quartz crystal microbalance

    Get PDF
    Water uptake, sorption mechanics and swelling characteristics of thin-film Nafion and a commercially available Tokuyama alkaline anion exchange membrane ionomer from the vapour phase is explored using a quartz crystal microbalance (QCM). The water uptake measures the number of water molecules adsorbed by the ionomer per functional group and is determined in-situ using the QCM frequency responses allowing for comparison with nanogram precision. Crystal admittance spectroscopy, along with equivalent circuit fitting, is applied to both thin films for the first time and is used to investigate the ionomer's viscoelastic changes during hydration; to elucidate the mechanisms at play during low, medium and high relative humidities

    Electro-thermal impedance spectroscopy applied to an open-cathode polymer electrolyte fuel cell

    Get PDF
    The development of in-situ diagnostic techniques is critical to ensure safe and effective operation of polymer electrolyte fuel cell systems. Infrared thermal imaging is an established technique which has been extensively applied to fuel cells; however, the technique is limited to measuring surface temperatures and is prone to errors arising from emissivity variations and reflections. Here we demonstrate that electro-thermal impedance spectroscopy can be applied to enhance infrared thermal imaging and mitigate its limitations. An open-cathode polymer electrolyte fuel cell is used as a case study. The technique operates by imposing a periodic electrical stimulus to the fuel cell and measuring the consequent surface temperature response (phase and amplitude). In this way, the location of heat generation from within the component can be determined and the thermal conduction properties of the materials and structure between the point of heat generation and the point of measurement can be determined. By selectively ‘locking-in’ to a suitable modulation frequency, spatially resolved images of the relative amplitude between the current stimulus and temperature can be generated that provide complementary information to conventional temporal domain thermograms

    Evolution and distribution of the anode overpotential and its oscillations in a polymer electrolyte membrane fuel cell exposed to carbon monoxide

    Get PDF
    Carbon monoxide (CO) poisoning of polymer electrolyte membrane fuel cells (PEMFCs) remains a challenge for their deployment, and a deeper understanding of the spatiotemporal dynamics involved is needed to develop effective mitigation strategies. In this work, localised reference electrodes were used to measure the anode overpotential at three locations across the active area of a galvanostatically operated cell (0.3 A cm−2) exposed to 100 ppm CO/H2. The anode region closest to the inlet was poisoned more rapidly than the rest of the cell, following a sigmoidal variation, and presented a higher CO coverage. The varying CO concentration, combined with local operating conditions, had a direct impact on the distribution of CO coverage. Additionally, complex self-sustained oscillations of the cell voltage and the anode overpotential were observed and correlated with the rate of CO oxidation in the overall cell. The coexistence of a dominant mean-field coupling area closer to the anode inlet, and a dominant migration coupling region closer to the outlet was identified, consistent with reported modelling predictions for a single straight channel cell. Finally, the cell recovery with pure H2 was shown to be a faster process than the CO adsorption, which follows first-order kinetics and is affected by local conditions

    Development and inter-rater reliability of the Liverpool adverse drug reaction causality assessment tool.

    Get PDF
    To develop and test a new adverse drug reaction (ADR) causality assessment tool (CAT)

    A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation

    Get PDF
    A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO2 to U metal in LiCl-KCl at 500C. The electrochemical cell contains arecessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl-KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems

    Glucose-loading reduces bone remodeling in women and osteoblast function in vitro

    Get PDF
    Aging is associated with a reduction in osteoblast life span and the volume of bone formed by each basic multicellular unit. Each time bone is resorbed, less is deposited producing microstructural deterioration. Aging is also associated with insulin resistance and hyperglycemia, either of which may cause, or be the result of, a decline in undercarboxylated osteocalcin (ucOC), a protein produced by osteoblasts that increases insulin sensitivity. We examined whether glucose-loading reduces bone remodeling and ucOC in vivo and osteoblast function in vitro, and so compromises bone formation. We administered an oral glucose tolerance test (OGTT) to 18 pre and postmenopausal, nondiabetic women at rest and following exercise and measured serum levels of bone remodeling markers (BRMs) and ucOC. We also assessed whether increasing glucose concentrations with or without insulin reduced survival and activity of cultured human osteoblasts. Glucose-loading at rest and following exercise reduced BRMs in pre and postmenopausal women and reduced ucOC in postmenopausal women. Higher glucose correlated negatively, whereas insulin correlated positively, with baseline BRMs and ucOC. The increase in serum glucose following resting OGTT was associated with the reduction in bone formation markers. D-glucose (>10 mmol L-1) increased osteoblast apoptosis, reduced cell activity and osteocalcin expression compared with 5 mmol L-1. Insulin had a protective effect on these parameters. Collagen expression in vitro was not affected in this time course. In conclusion, glucose exposure reduces BRMs in women and exercise failed to attenuate this suppression effect. The suppressive effect of glucose on BRMs may be due to impaired osteoblast work and longevity. Whether glucose influences material composition and microstructure remains to be determined
    • …
    corecore