25,085 research outputs found

    Timelike and Spacelike Matter Inheritance Vectors in Specific Forms of Energy-Momentum Tensor

    Full text link
    This paper is devoted to the investigation of the consequences of timelike and spacelike matter inheritance vectors in specific forms of energy-momentum tensor, i.e., for string cosmology (string cloud and string fluid) and perfect fluid. Necessary and sufficient conditions are developed for a spacetime with string cosmology and perfect fluid to admit a timelike matter inheritance vector, parallel to uau^a and spacelike matter inheritance vector, parallel to xax^a. We compare the outcome with the conditions of conformal Killing vectors. This comparison provides us the conditions for the existence of matter inheritance vector when it is also a conformal Killing vector. Finally, we discuss these results for the existence of matter inheritance vector in the special cases of the above mentioned spacetimes.Comment: 27 pages, accepted for publication in Int. J. of Mod. Phys.

    Study of low frequency hydromagnetic waves using ATS-1 data

    Get PDF
    Low frequency oscillations of the magnetic field at ATS-1 were analyzed for the 25 month data interval, Dec., 1966 through 1968. Irregular oscillations and those associated with magnetic storms were excluded from the analysis. Of the 222 events identified, 170 were found to be oscillating predominantly transverse to the background magnetic field. The oscillations were observed to occur most frequently in the early afternoon hours. They also seemed to occur more frequently during Dec., Jan., and Feb. than at any other time of the year. During a given event, the frequency was fairly constant. The event duration varied between a minimum of 10 min. and a maximum of 14 hrs and 26 min. During a given event the amplitude varied

    Modulated Amplitude Waves in Collisionally Inhomogeneous Bose-Einstein Condensates

    Get PDF
    We investigate the dynamics of an effectively one-dimensional Bose-Einstein condensate (BEC) with scattering length aa subjected to a spatially periodic modulation, a=a(x)=a(x+L)a=a(x)=a(x+L). This "collisionally inhomogeneous" BEC is described by a Gross-Pitaevskii (GP) equation whose nonlinearity coefficient is a periodic function of xx. We transform this equation into a GP equation with constant coefficient aa and an additional effective potential and study a class of extended wave solutions of the transformed equation. For weak underlying inhomogeneity, the effective potential takes a form resembling a superlattice, and the amplitude dynamics of the solutions of the constant-coefficient GP equation obey a nonlinear generalization of the Ince equation. In the small-amplitude limit, we use averaging to construct analytical solutions for modulated amplitude waves (MAWs), whose stability we subsequently examine using both numerical simulations of the original GP equation and fixed-point computations with the MAWs as numerically exact solutions. We show that "on-site" solutions, whose maxima correspond to maxima of a(x)a(x), are significantly more stable than their "off-site" counterparts.Comment: 25 pages, 10 figures (many with several parts), to appear in Physica D; higher resolution versions of some figures are available at http://www.its.caltech.edu/~mason/paper

    Arkansas Wheat Cultivar Performance Tests 2018-2019

    Get PDF
    Wheat cultivar performance tests are conducted each year in Ark- ansas by the University of Arkansas System Division of Agriculture’s Arkansas Agricultural Experiment Station, Department of Crop, Soil and Environmental Sciences. The tests provide information to companies developing cultivars and marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for small-grain producers. The tests are conducted at the Northeast Research and Extension Center at Keiser, the Vegetable Substation near Kibler, the Lon Mann Cotton Research Station near Marianna, the Newport Extension Center near Newport, the Rohwer Research Station near Rohwer, the Pine Tree Research Station near Colt, and the Hope Research and Extension Center. In addition, entries are evaluated in a stripe rust (Puccinia striiformis f.sp. tritici) inoculated nursery in Fayetteville and a Fusarium head blight (FHB) inoculated nursery in Newport and Fayetteville. Specific location and cultural practice information accompany each table

    Seed Yield Prediction Models of Four Common Moist-Soil Plant Species in Texas

    Get PDF
    Seed production by moist-soil plant species often varies within and among managed wetlands and on larger landscapes. Quantifying seed production of moist-soil plants can be used to evaluate wetland management strategies and estimate wetland energetic carrying capacity, specifically for waterfowl. In the past, direct estimation techniques were used, but due to excessive personnel and time costs, other indirect methods have been developed. Because indirect seed yield models do not exist for moist-soil plant species in east-central or coastal Texas, we developed direct and indirect methods to model seed production on regional managed wetlands. In September 2004 and 2005, we collected Echinochloa crusgalli (barnyard grass), E. walterii (wild millet), E. colona (jungle rice), and Oryza sativa (cultivated rice) for phytomorphological measurements and seed yield modeling. Initial simple linear and point of origin regression analyses demonstrate strong relationships (P \u3c 0.001) among phytomorphological and dot grid methods in predicting seed production for all four species. These models should help regional wetland managers evaluate moist-soil management success and create models for seed production for other moist-soil plants in this region

    Dynamics and Manipulation of Matter-Wave Solitons in Optical Superlattices

    Get PDF
    We analyze the existence and stability of bright, dark, and gap matter-wave solitons in optical superlattices. Then, using these properties, we show that (time-dependent) ``dynamical superlattices'' can be used to controllably place, guide, and manipulate these solitons. In particular, we use numerical experiments to displace solitons by turning on a secondary lattice structure, transfer solitons from one location to another by shifting one superlattice substructure relative to the other, and implement solitonic ``path-following'', in which a matter wave follows the time-dependent lattice substructure into oscillatory motion.Comment: 6 pages, revtex, 6 figures, to appear in Physics Letters A; minor modifications from last versio

    Arkansas Wheat Cultivar Performance Tests 2016-2017

    Get PDF
    Wheat cultivar performance tests are conducted each year in Arkansas by the University of Arkansas System Division of Agriculture’s Arkansas Agricultural Experiment Station, Department of Crop, Soil and Environmental Sciences. The tests provide information to companies developing cultivars and marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for small-grain producers
    • …
    corecore