2,705 research outputs found
New developments in canine hepatozoonosis in North America: a review
Canine hepatozoonosis is caused by Hepatozoon canis and Hepatozoon americanum, apicomplexan parasites transmitted to dogs by ingestion of infectious stages. Although the two agents are phylogenetically related, specific aspects, including characteristics of clinical disease and the natural history of the parasites themselves, differ between the two species. Until recently, H. canis infections had not been clearly documented in North America, and autochthonous infection with H. americanum has yet to be reported outside of the southern United States. However, recent reports demonstrate H. canis is present in areas of North America where its vector tick, Rhipicephalus sanguineus, has long been endemic, and that the range of H. americanum is likely expanding along with that of its vector tick, Amblyomma maculatum; co-infections with the two organisms have also been identified. Significant intraspecific variation has been reported in the 18S rRNA gene sequence of both Hepatozoon spp.-infecting dogs, suggesting that each species may represent a complex of related genogroups rather than well-defined species. Transmission of H. americanum to dogs via ingestion of cystozoites in muscle of infected vertebrates was recently demonstrated, supporting the concept of predation as a means of natural transmission. Although several exciting advances have occurred in recent years, much remains to be learned about patterns of infection and the nature of clinical disease caused by the agents of canine hepatozoonosis in North America
Predicting clinical diagnosis in Huntington's disease: An imaging polymarker.
OBJECTIVE: Huntington's disease (HD) gene carriers can be identified before clinical diagnosis; however, statistical models for predicting when overt motor symptoms will manifest are too imprecise to be useful at the level of the individual. Perfecting this prediction is integral to the search for disease modifying therapies. This study aimed to identify an imaging marker capable of reliably predicting real-life clinical diagnosis in HD. METHOD: A multivariate machine learning approach was applied to resting-state and structural magnetic resonance imaging scans from 19 premanifest HD gene carriers (preHD, 8 of whom developed clinical disease in the 5 years postscanning) and 21 healthy controls. A classification model was developed using cross-group comparisons between preHD and controls, and within the preHD group in relation to "estimated" and "actual" proximity to disease onset. Imaging measures were modeled individually, and combined, and permutation modeling robustly tested classification accuracy. RESULTS: Classification performance for preHDs versus controls was greatest when all measures were combined. The resulting polymarker predicted converters with high accuracy, including those who were not expected to manifest in that time scale based on the currently adopted statistical models. INTERPRETATION: We propose that a holistic multivariate machine learning treatment of brain abnormalities in the premanifest phase can be used to accurately identify those patients within 5 years of developing motor features of HD, with implications for prognostication and preclinical trials. Ann Neurol 2018;83:532-543.SLM is funded by a National Institute for Health Research (NIHR) Translational Research Collaboration for Rare Diseases fellowship. This research has been funded/supported by the National Institute for Health Research Rare Diseases Translational Research Collaboration (NIHR RD-TRC). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.
RAB is funded by the NIHR Cambridge Biomedical Research Centre and the Cambridge University NHS Foundation Trust.
RED is employed on an EC Marie-Curie CIG, awarded to AH,
SJT, EJ and RS receive funding from a Wellcome Collaborative Award (200181/Z/15/Z
The citric acid cough threshold and the ventilatory response to carbon dioxide on ascent to high altitude
SummaryVentilatory control undergoes profound changes on ascent to high altitude. We hypothesized that the fall in citric acid cough threshold seen on ascent to altitude is mediated by changes in the central control of cough and would parallel changes in central ventilatory control assessed by the hypercapnic ventilatory response (HCVR). Twenty-five healthy volunteers underwent measurements of HCVR and citric acid sensitivity at sea level and during a 9 day sojourn at 5200m. None of the subjects had any evidence of respiratory infection. Citric acid cough threshold fell significantly on ascent to 5200m. The slope, S, of the HCVR increased significantly on ascent to 5200m and during the stay at altitude. There was no correlation between citric acid sensitivity and HCVR. We conclude that the change in citric acid cough threshold seen on exposure to hypobaric hypoxia is unlikely to be mediated by changes in the central control of cough. Sensitivity to citric acid may be due to early subclinical pulmonary edema stimulating airway sensory nerve endings
An Archaeological Survey on the Xoxocotlan Piedmont, Oaxaca, Mexico
Surface survey on the piedmont near the present village of Xoxocotlan, Oaxaca, Mexico, has revealed the pattern of prehistoric settlement around an irrigation canal that distributed water from a dammed reservoir located on the flanks of Monte Alban. Intensive systematic collection techniques have permitted quantitative statements to be made about the density of occupation and the contribution of the irrigation system to the food supply of Monte Alban
Molecular neuropathology of the synapse in sheep with CLN5 Batten disease
© 2015 Published by Wiley Periodicals, Inc. Aims: Synapses represent a major pathological target across a broad range of neurodegenerative conditions. Recent studies addressing molecular mechanisms regulating synaptic vulnerability and degeneration have relied heavily on invertebrate and mouse models. Whether similar molecular neuropathological changes underpin synaptic breakdown in large animal models and in human patients with neurodegenerative disease remains unclear. We therefore investigated whether molecular regulators of synaptic pathophysiology, previously identified in Drosophila and mouse models, are similarly present and modified in the brain of sheep with CLN5 Batten disease. Methods: Gross neuropathological analysis of CLN5 Batten disease sheep and controls was used alongside postmortem MRI imaging to identify affected brain regions. Synaptosome preparations were then generated and quantitative fluorescent Western blotting used to determine and compare levels of synaptic proteins. Results: The cortex was particularly affected by regional neurodegeneration and synaptic loss in CLN5 sheep, whilst the cerebellum was relatively spared. Quantitative assessment of the protein content of synaptosome preparations revealed significant changes in levels of seven out of eight synaptic neurodegeneration proteins investigated in the motor cortex, but not cerebellum, of CLN5 sheep (α-synuclein, CSP-α, neurofascin, ROCK2, calretinin, SIRT2, and UBR4). Conclusions: Synaptic pathology is a robust correlate of region-specific neurodegeneration in the brain of CLN5 sheep, driven by molecular pathways similar to those reported in Drosophila and rodent models. Thus, large animal models, such as sheep, represent ideal translational systems to develop and test therapeutics aimed at delaying or halting synaptic pathology for a range of human neurodegenerative conditions
Homophily and Contagion Are Generically Confounded in Observational Social Network Studies
We consider processes on social networks that can potentially involve three
factors: homophily, or the formation of social ties due to matching individual
traits; social contagion, also known as social influence; and the causal effect
of an individual's covariates on their behavior or other measurable responses.
We show that, generically, all of these are confounded with each other.
Distinguishing them from one another requires strong assumptions on the
parametrization of the social process or on the adequacy of the covariates used
(or both). In particular we demonstrate, with simple examples, that asymmetries
in regression coefficients cannot identify causal effects, and that very simple
models of imitation (a form of social contagion) can produce substantial
correlations between an individual's enduring traits and their choices, even
when there is no intrinsic affinity between them. We also suggest some possible
constructive responses to these results.Comment: 27 pages, 9 figures. V2: Revised in response to referees. V3: Ditt
Cerebrovascular and blood-brain barrier impairments in Huntington's disease: Potential implications for its pathophysiology: Vascular impairments in HD
ObjectiveAlthough the underlying cause of Huntington's disease (HD) is well established, the actual pathophysiological processes involved remain to be fully elucidated. In other proteinopathies such as Alzheimer's and Parkinson's diseases, there is evidence for impairments of the cerebral vasculature as well as the blood–brain barrier (BBB), which have been suggested to contribute to their pathophysiology. We investigated whether similar changes are also present in HD.MethodsWe used 3‐ and 7‐Tesla magnetic resonance imaging as well as postmortem tissue analyses to assess blood vessel impairments in HD patients. Our findings were further investigated in the R6/2 mouse model using in situ cerebral perfusion, histological analysis, Western blotting, as well as transmission and scanning electron microscopy.ResultsWe found mutant huntingtin protein (mHtt) aggregates to be present in all major components of the neurovascular unit of both R6/2 mice and HD patients. This was accompanied by an increase in blood vessel density, a reduction in blood vessel diameter, as well as BBB leakage in the striatum of R6/2 mice, which correlated with a reduced expression of tight junction‐associated proteins and increased numbers of transcytotic vesicles, which occasionally contained mHtt aggregates. We confirmed the existence of similar vascular and BBB changes in HD patients.InterpretationTaken together, our results provide evidence for alterations in the cerebral vasculature in HD leading to BBB leakage, both in the R6/2 mouse model and in HD patients, a phenomenon that may, in turn, have important pathophysiological implications. Ann Neurol 2015;78:160–17
The First Hyper-luminous Infrared Galaxy Discovered by WISE
We report the discovery by the Wide-field Infrared Survey Explorer (WISE) of the z = 2.452 source WISE J181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of ~1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 μm and well detected at 12 or 22 μm). The WISE data and a 350 μm detection give a minimum bolometric luminosity of 3.7 × 10^(13) L_☉, with ~10^(14) L_☉ plausible. Follow-up images reveal four nearby sources: a QSO and two Lyman break galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate ~300 M_☉ yr^(–1), accounting for ≲ 10% of the bolometric luminosity. Strong 22 μm emission relative to 350 μm implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is ~10 times above the far-infrared/radio correlation, indicating an active galactic nucleus (AGN) is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local M BH-bulge mass relation, the implied Eddington ratio is ≳ 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation
- …