29,661 research outputs found

    From 2D Integrable Systems to Self-Dual Gravity

    Full text link
    We explain how to construct solutions to the self-dual Einstein vacuum equations from solutions of various two-dimensional integrable systems by exploiting the fact that the Lax formulations of both systems can be embedded in that of the self-dual Yang--Mills equations. We illustrate this by constructing explicit self-dual vacuum metrics on R2×Σ\R^2\times \Sigma, where Σ\Sigma is a homogeneous space for a real subgroup of SL(2, \C) associated with the two-dimensional system.Comment: 9 pages, LaTex, no figure

    The supersymmetric Penrose transform in six dimensions

    Full text link
    We give a supersymmetric extension to the six-dimensional Penrose transform and give an integral formula for the on-shell (0, 2) supermultiplet. The relationship between super fields on space-time and twistor space is clarified and the space-time superfield constraint equations are derived from the geometry of supertwistor space. We also explain the extension to more general (0,n) supermultiplets and give twistor actions for these theories.Comment: 20 page

    NASTRAN cyclic symmetry capability

    Get PDF
    A development for NASTRAN which facilitates the analysis of structures made up of identical segments symmetrically arranged with respect to an axis is described. The key operation in the method is the transformation of the degrees of freedom for the structure into uncoupled symmetrical components, thereby greatly reducing the number of equations which are solved simultaneously. A further reduction occurs if each segment has a plane of reflective symmetry. The only required assumption is that the problem be linear. The capability, as developed, will be available in level 16 of NASTRAN for static stress analysis, steady state heat transfer analysis, and vibration analysis. The paper includes a discussion of the theory, a brief description of the data supplied by the user, and the results obtained for two example problems. The first problem concerns the acoustic modes of a long prismatic cavity imbedded in the propellant grain of a solid rocket motor. The second problem involves the deformations of a large space antenna. The latter example is the first application of the NASTRAN Cyclic Symmetry capability to a really large problem

    Controlled Ecological Life Support System: Research and Development Guidelines

    Get PDF
    Results of a workshop designed to provide a base for initiating a program of research and development of controlled ecological life support systems (CELSS) are summarized. Included are an evaluation of a ground based manned demonstration as a milestone in CELSS development, and a discussion of development requirements for a successful ground based CELSS demonstration. Research recommendations are presented concerning the following topics: nutrition and food processing, food production, waste processing, systems engineering and modelling, and ecology-systems safety

    Guiding the development of a controlled ecological life support system

    Get PDF
    The workshop is reported which was held to establish guidelines for future development of ecological support systems, and to develop a group of researchers who understand the interdisciplinary requirements of the overall program

    Accuracy of estimating the masses of Phobos and Deimos from multiple Viking orbiter encounters

    Get PDF
    The problem was investigated of estimating the masses of Phobos and Deimos from Doppler and onboard optical measurements during the Viking extended mission. A Kalman filter was used to analyze the effects of gravitational uncertainties and nongravitational accelerations. These accelerations destroy the dynamical integrity of the orbit, and multibatch or limited memory filtering is preferred to single batch processing. Optical tracking is essential to improve the relative orbit geometry. The masses can be determined to about 10% and 25% respectively for Phobos and Deimos, assuming satellite densities of about 3 gr/cu cm

    Vibrating quantum billiards on Riemannian manifolds

    Full text link
    Quantum billiards provide an excellent forum for the analysis of quantum chaos. Toward this end, we consider quantum billiards with time-varying surfaces, which provide an important example of quantum chaos that does not require the semiclassical (0\hbar \longrightarrow 0) or high quantum-number limits. We analyze vibrating quantum billiards using the framework of Riemannian geometry. First, we derive a theorem detailing necessary conditions for the existence of chaos in vibrating quantum billiards on Riemannian manifolds. Numerical observations suggest that these conditions are also sufficient. We prove the aforementioned theorem in full generality for one degree-of-freedom boundary vibrations and briefly discuss a generalization to billiards with two or more degrees-of-vibrations. The requisite conditions are direct consequences of the separability of the Helmholtz equation in a given orthogonal coordinate frame, and they arise from orthogonality relations satisfied by solutions of the Helmholtz equation. We then state and prove a second theorem that provides a general form for the coupled ordinary differential equations that describe quantum billiards with one degree-of-vibration boundaries. This set of equations may be used to illustrate KAM theory and also provides a simple example of semiquantum chaos. Moreover, vibrating quantum billiards may be used as models for quantum-well nanostructures, so this study has both theoretical and practical applications.Comment: 23 pages, 6 figures, a few typos corrected. To appear in International Journal of Bifurcation and Chaos (9/01

    Electric and magnetic response to the continuum for A=7 isobars in a dicluster model

    Full text link
    Mirror isobars 7^7Li and 7^7Be are investigated in a dicluster model. The magnetic dipole moments and the magnetic dipole response to the continuum are calculated in this framework. The magnetic contribution is found to be small with respect to electric dipole and quadrupole excitations even at astrophysical energies, at a variance with the case of deuteron. Energy weighted molecular sum rules are evaluated and a formula for the molecular magnetic dipole sum rule is found which matches the numerical calculations. Cross-sections for photo-dissociation and radiative capture as well as the S-factor for reactions of astrophysical significance are calculated with good agreement with known experimental data.Comment: Accepted in EPJ

    Static investigation of two STOL nozzle concepts with pitch thrust-vectoring capability

    Get PDF
    A static investigation of the internal performance of two short take-off and landing (STOL) nozzle concepts with pitch thrust-vectoring capability has been conducted. An axisymmetric nozzle concept and a nonaxisymmetric nozzle concept were tested at dry and afterburning power settings. The axisymmetric concept consisted of a circular approach duct with a convergent-divergent nozzle. Pitch thrust vectoring was accomplished by vectoring the approach duct without changing the nozzle geometry. The nonaxisymmetric concept consisted of a two dimensional convergent-divergent nozzle. Pitch thrust vectoring was implemented by blocking the nozzle exit and deflecting a door in the lower nozzle flap. The test nozzle pressure ratio was varied up to 10.0, depending on model geometry. Results indicate that both pitch vectoring concepts produced resultant pitch vector angles which were nearly equal to the geometric pitch deflection angles. The axisymmetric nozzle concept had only small thrust losses at the largest pitch deflection angle of 70 deg., but the two-dimensional convergent-divergent nozzle concept had large performance losses at both of the two pitch deflection angles tested, 60 deg. and 70 deg
    corecore