15,699 research outputs found

    Optical and Infrared Light Curves of the Eclipsing X-ray Binary V395 Car = 2S 0921-630

    Get PDF
    We present results of optical and infrared photometric monitoring of the eclipsing low-mass X-ray binary V395 Car (2S 0921-630). Our observations reveal a clear, repeating orbital modulation with an amplitude of about one magnitude in B, and V and a little less in J. Combining our data with archival observations spanning about 20 years, we derive an updated ephemeris with orbital period 9.0026+/-0.0001d. We attribute the modulation to a combination of the changing aspect of the irradiated face of the companion star and eclipses of the accretion disk around the neutron star. Both appear to be necessary as a secondary eclipse of the companion star is clearly seen. We model the B, V, and J lightcurves using a simple model of an accretion disk and companion star and find a good fit is possible for binary inclinations of 82.2+/-1.0 degrees. We estimate the irradiating luminosity to be about 8x10^35 erg/s, in good agreement with X-ray constraints.Comment: 6 pages, accepted for publication in MNRA

    The role of interplanetary scattering in western hemisphere large solar energetic particle events

    Get PDF
    Using high-sensitivity instruments on the ACE spacecraft, we have examined the intensities of O and Fe in 14 large solar energetic particle events whose parent activity was in the solar western hemisphere. Sampling the intensities at low (~273 keV nucleon to the -1) and high (~12 MeV nucleon to the -1) energies, we find that at the same kinetic energy per nucleon, the Fe/O ratio decreases with time, as has been reported previously. This behavior is seen in more than 70% of the cases during the rise to maximum intensity and continues in most cases into the decay phase. We find that for most events if we compare the Fe intensity with the O intensity at a higher kinetic energy per nucleon, the two time-intensity profiles are strikingly similar. Examining alternate scenarios that could produce this behavior, we conclude that for events showing this behavior the most likely explanation is that the Fe and O share similar injection profiles near the Sun, and that scattering in the interplanetary medium dominates the profiles observed at 1 AU

    Magnetic phase diagram and transport properties of FeGe_2

    Full text link
    We have used resistivity measurements to study the magnetic phase diagram of the itinerant antiferromagnet FeGe_2 in the temperature range from 0.3->300 K in magnetic fields up to 16 T. In contrast to theoretical predictions, the incommensurate spin density wave phase is found to be stable at least up to 16 T, with an estimated critical field \mu _0H_c of ~ 30 T. We have also studied the low temperature magnetoresistance in the [100], [110], and [001] directions. The transverse magnetoresistance is well described by a power law for magnetic fields above 1 T with no saturation observed at high fields. We discuss our results in terms of the magnetic structure and the calculated electronic bandstructure of FeGe_2. We have also observed, for the first time in this compound, Shubnikov-de Haas oscillations in the transverse magnetoresistance with a frequency of 190 +- 10 T for a magnetic field along [001].Comment: 13 pages, RevTeX, 7 postscript figures, to appear in Journal of Physics: Condensed Matte

    Continuous variable entanglement of phase locked light beams

    Full text link
    We explore in detail the possibility of intracavity generation of continuous-variable (CV) entangled states of light beams under mode phase-locked conditions. We show that such quantum states can be generated in self-phase locked nondegenerate optical parametric oscillator (NOPO) based on a type-II phase-matched down-conversion combined with linear mixer of two orthogonally polarized modes of the subharmonics in a cavity. A quantum theory of this device, recently realized in the experiment, is developed for both sub-threshold and above-threshold operational regimes. We show that the system providing high level phase coherence between two generated modes, unlike to the ordinary NOPO, also exhibits different types of quantum correlations between photon numbers and phases of these modes. We quantify the CV entanglement as two-mode squeezing and show that the maximal degree of the integral two-mode squeezing(that is 50% relative to the level of vacuum fluctuations) is achieved at the pump field intensity close to the generation threshold of self-phase locked NOPO, provided that the constant of linear coupling between the two polarizations is much less than the mode detunings. The peculiarities of CV entanglement for the case of unitary, non-dissipative dynamics of the system under consideration is also cleared up

    Seed populations for large solar particle events of cycle 23

    Get PDF
    Using high-resolution mass spectrometers on board the Advanced Composition Explorer (ACE), we surveyed the event-averaged ~0.1-60 MeV/nuc heavy ion elemental composition in 64 large solar energetic particle (LSEP) events of cycle 23. Our results show the following: (1) The rare isotope ^3He is greatly enhanced over the corona or the solar wind values in 46% of the events. (2) The Fe/O ratio decreases with increasing energy up to ~10 MeV/nuc in ~92% of the events and up to ~60 MeV/nuc in ~64% of the events. (3) Heavy ion abundances from C-Fe exhibit systematic M/g-dependent enhancements that are remarkably similar to those seen in ^3He-rich SEP events and CME-driven interplanetary (IP) shock events. Taken together, these results confirm the role of shocks in energizing particles up to ~60 MeV/nuc in the majority of large SEP events of cycle 23, but also show that the seed population is not dominated by ions originating from the ambient corona or the thermal solar wind, as previously believed. Rather, it appears that the source material for CME-associated large SEP events originates predominantly from a suprathermal population with a heavy ion enrichment pattern that is organized according to the ion's mass-per-charge ratio. These new results indicate that current LSEP models must include the routine production of this dynamic suprathermal seed population as a critical pre-cursor to the CME shock acceleration process

    Hidden Symmetries and Integrable Hierarchy of the N=4 Supersymmetric Yang-Mills Equations

    Get PDF
    We describe an infinite-dimensional algebra of hidden symmetries of N=4 supersymmetric Yang-Mills (SYM) theory. Our derivation is based on a generalization of the supertwistor correspondence. Using the latter, we construct an infinite sequence of flows on the solution space of the N=4 SYM equations. The dependence of the SYM fields on the parameters along the flows can be recovered by solving the equations of the hierarchy. We embed the N=4 SYM equations in the infinite system of the hierarchy equations and show that this SYM hierarchy is associated with an infinite set of graded symmetries recursively generated from supertranslations. Presumably, the existence of such nonlocal symmetries underlies the observed integrable structures in quantum N=4 SYM theory.Comment: 24 page

    On Exceptional Vertex Operator (Super) Algebras

    Get PDF
    We consider exceptional vertex operator algebras and vertex operator superalgebras with the property that particular Casimir vectors constructed from the primary vectors of lowest conformal weight are Virasoro descendents of the vacuum. We show that the genus one partition function and characters for simple ordinary modules must satisfy modular linear differential equations. We show the rationality of the central charge and module lowest weights, modularity of solutions, the dimension of each graded space is a rational function of the central charge and that the lowest weight primaries generate the algebra. We also discuss conditions on the reducibility of the lowest weight primary vectors as a module for the automorphism group. Finally we analyse solutions for exceptional vertex operator algebras with primary vectors of lowest weight up to 9 and for vertex operator superalgebras with primary vectors of lowest weight up to 17/2. Most solutions can be identified with simple ordinary modules for known algebras but there are also four conjectured algebras generated by weight two primaries and three conjectured extremal vertex operator algebras generated by primaries of weight 3, 4 and 6 respectively.Comment: 37 page

    The Ising-Kondo lattice with transverse field: an f-moment Hamiltonian for URu2Si2?

    Full text link
    We study the phase diagram of the Ising-Kondo lattice with transverse magnetic field as a possible model for the weak-moment heavy-fermion compound URu2Si2, in terms of two low-lying f singlets in which the uranium moment is coupled by on-site exchange to the conduction electron spins. In the mean-field approximation for an extended range of parameters, we show that the conduction electron magnetization responds logarithmically to f-moment formation, that the ordered moment in the antiferromagnetic state is anomalously small, and that the Neel temperature is of the order observed. The model gives a qualitatively correct temperature-dependence, but not magnitude, of the specific heat. The majority of the specific heat jump at the Neel temperature arises from the formation of a spin gap in the conduction electron spectrum. We also discuss the single-impurity version of the model and speculate on ways to increase the specific heat coefficient. In the limits of small bandwidth and of small Ising-Kondo coupling, we find that the model corresponds to anisotropic Heisenberg and Hubbard models respectively.Comment: 20 pages RevTeX including 5 figures (1 in LaTeX, 4 in uuencoded EPS), Received by Phys. Rev. B 19 April 199
    corecore