2,467 research outputs found

    Comparison of Structural Concepts for Transport Aircraft with a Tail Cone Turbine

    Get PDF
    An evaluation of three structural concepts for an advanced aircraft design with a tail cone turbine is presented. Structural models were developed using an innovative rapid finite element modeling tool called Conceptual Design Shop (CDS). CDS is an attempt to fill a gap in current finite element modeling software to automatically connect wings and tails to the fuselage with sufficient support structure in airframe models. For comparison with actual aircraft structures, a model of a transport aircraft design developed using CDS is compared with published structural weight data for a Boeing 737-200. A method for computing aerodynamic stability parameters from an MSC/NASTRAN finite element analysis output deck is also discussed. Finally, the weight effects for using a tail cone turbine in an advanced transport aircraft design are evaluated by comparing three composite structural models, for which component thicknesses and cross-sections are sized by the Hypersizer software

    Test and Analysis Correlation for Sandwich Composite Longitudinal Joint Specimens

    Get PDF
    The NASA Composite Technology for Exploration (CTE) project is tasked with evaluating methods to analyze and manufacture composite joints for potential use in block upgrades to the Space Launch System (SLS) launch-vehicle structures such as the Payload Attach Fitting (PAF). To perform this task, the CTE project has initiated test and analysis correlation studies for composite joints under various loading conditions. Herein, NASA-developed numerical models are correlated with the experimental results from a series of tension tests. Pretest strain results matched the far-field test data well, but did not capture the nonlinear response in the vicinity of the joint. A refined pretest analytical model was modified to represent progressive failure of the specimens at failure locations observed during the experimental tests. The nonlinear strain response from this progressive failure model predicted the delamination failure load within 15% of the test data, but underpredicted the nonlinearity of the strain response. Further study of composite material models that account for the nonlinear shear response of fabric composites is recommended for the composite joint structures considered in this paper

    Probabilistic Analysis of a Composite Crew Module

    Get PDF
    An approach for conducting reliability-based analysis (RBA) of a Composite Crew Module (CCM) is presented. The goal is to identify and quantify the benefits of probabilistic design methods for the CCM and future space vehicles. The coarse finite element model from a previous NASA Engineering and Safety Center (NESC) project is used as the baseline deterministic analysis model to evaluate the performance of the CCM using a strength-based failure index. The first step in the probabilistic analysis process is the determination of the uncertainty distributions for key parameters in the model. Analytical data from water landing simulations are used to develop an uncertainty distribution, but such data were unavailable for other load cases. The uncertainty distributions for the other load scale factors and the strength allowables are generated based on assumed coefficients of variation. Probability of first-ply failure is estimated using three methods: the first order reliability method (FORM), Monte Carlo simulation, and conditional sampling. Results for the three methods were consistent. The reliability is shown to be driven by first ply failure in one region of the CCM at the high altitude abort load set. The final predicted probability of failure is on the order of 10-11 due to the conservative nature of the factors of safety on the deterministic loads

    Equivalent Plate Analysis of Aircraft Wing with Discrete Source Damage

    Get PDF
    An equivalent plate procedure is developed to provide a computationally efficient means of matching the stiffness and frequencies of flight vehicle wing structures for prescribed loading conditions. First, the equivalent plate is used to match the stiffness of a stiffened panel without damage and the stiffness of a stiffened panel with damage. For both stiffened panels, the equivalent plate models reproduce the deformation of a corresponding detailed model exactly for the given loading conditions. Once the stiffness was matched, the equivalent plate models were then used to predict the frequencies of the panels. Two analytical procedures using the lumped-mass matrix were used to match the first five frequencies of the corresponding detailed model. In both the procedures, the lumped-mass matrix for the equivalent plate is constructed by multiplying the diagonal terms of the consistent-mass matrix by a proportionality constant. In the first procedure, the proportionality constant is selected such that the total mass of the equivalent plate is equal to that of the detailed model. In the second method, the proportionality constant is selected to minimize the sum of the squares of the errors in a set of pre-selected frequencies between the equivalent plate model and the detailed model. The equivalent plate models reproduced the fundamental first frequency accurately in both the methods. It is observed that changing only the mass distribution in the equivalent plate model did not provide enough flexibility to match all of the frequencies

    Testing and Analysis Correlation of Composite Sandwich Longitudinal Bonded Joints for Space Launch Vehicle Structures

    Get PDF
    The NASA Composite Technology for Exploration (CTE) Project has been developing and demonstrating critical composite technologies with a focus on joints; incorporating materials, design/analysis, manufacturing, and tests that utilize NASA expertise and capabilities. The CTE project has focused on the development of composite longitudinal bonded joint technologies for conical structures such as the SLS Payload Attach Fitting (PAF) due to challenging joint geometries and loads compared to cylindrical jointed structures. The CTE team selected and designed a double-lap composite bonded joint as the most advantageous longitudinal joint to advance for the CTE project. This paper reports on the longitudinal bonded joint sub-element test articles that were fabricated and tested for several loading conditions to test the capability of the bonded joint design. Test and analysis correlation to the sub-element test articles are presented in the paper

    Conceptual Design Shop: A Tool for Rapid Airframe Structural Modeling

    Get PDF
    This paper presents an innovative approach to rapidly generate finite element (FE) models of a complete airframe for a variety of airframe concepts. The current implementation of this software includes all airfoil surfaces and the fuselage, and is limited to FE modeling of low-wing designs with T-tails or twin tails. This tool, called the Conceptual Design Shop (CDS), was developed using the PATRAN command language (PCL) within the PATRAN finite element modeling software. CDS is an attempt to fill a gap in current finite element modeling software to automatically connect wings and tails to the fuselage in airframe models. The CDS software is demonstrated on two airframe designs: a generic transport aircraft and an advanced aircraft design with a boundary-layer ingestion engine

    A Computational Approach for Probabilistic Analysis of LS-DYNA Water Impact Simulations

    Get PDF
    NASA s development of new concepts for the Crew Exploration Vehicle Orion presents many similar challenges to those worked in the sixties during the Apollo program. However, with improved modeling capabilities, new challenges arise. For example, the use of the commercial code LS-DYNA, although widely used and accepted in the technical community, often involves high-dimensional, time consuming, and computationally intensive simulations. Because of the computational cost, these tools are often used to evaluate specific conditions and rarely used for statistical analysis. The challenge is to capture what is learned from a limited number of LS-DYNA simulations to develop models that allow users to conduct interpolation of solutions at a fraction of the computational time. For this problem, response surface models are used to predict the system time responses to a water landing as a function of capsule speed, direction, attitude, water speed, and water direction. Furthermore, these models can also be used to ascertain the adequacy of the design in terms of probability measures. This paper presents a description of the LS-DYNA model, a brief summary of the response surface techniques, the analysis of variance approach used in the sensitivity studies, equations used to estimate impact parameters, results showing conditions that might cause injuries, and concluding remarks

    A Computational Approach for Probabilistic Analysis of Water Impact Simulations

    Get PDF
    NASA's development of new concepts for the Crew Exploration Vehicle Orion presents many similar challenges to those worked in the sixties during the Apollo program. However, with improved modeling capabilities, new challenges arise. For example, the use of the commercial code LS-DYNA, although widely used and accepted in the technical community, often involves high-dimensional, time consuming, and computationally intensive simulations. The challenge is to capture what is learned from a limited number of LS-DYNA simulations to develop models that allow users to conduct interpolation of solutions at a fraction of the computational time. This paper presents a description of the LS-DYNA model, a brief summary of the response surface techniques, the analysis of variance approach used in the sensitivity studies, equations used to estimate impact parameters, results showing conditions that might cause injuries, and concluding remarks

    Test and Analysis Correlation for a Y-Joint Specimen for a Composite Cryotank

    Get PDF
    The Composite Cryotank Technology Demonstration (CCTD) project under NASA's Game Changing Development Program (GCDP) developed space technologies using advanced composite materials. Under CCTD, NASA funded the Boeing Company to design and test a number of element-level joint specimens as a precursor to a 2.4-m diameter composite cryotank. Preliminary analyses indicated that the y-joint in the cryotank had low margins of safety; hence the y-joint was considered to be a critical design region. The y-joint design includes a softening strip wedge to reduce localized shear stresses at the skirt/dome interface. In this paper, NASA-developed analytical models will be correlated with the experimental results of a series of positive-peel y-joint specimens from Boeing tests. Initial analytical models over-predicted the experimental strain gage readings in the far-field region by approximately 10%. The over-prediction was attributed to uncertainty in the elastic properties of the laminate and a mismatch between the thermal expansion of the strain gages and the laminate. The elastic properties of the analytical model were adjusted to account for the strain gage differences. The experimental strain gages also indicated a large non-linear effect in the softening strip region that was not predicted by the analytical model. This non-linear effect was attributed to delamination initiating in the softening strip region at below 20% of the failure load for the specimen. Because the specimen was contained in a thermally insulated box during cryogenic testing to failure, delamination initiation and progression was not visualized during the test. Several possible failure initiation locations were investigated, and a most likely failure scenario was determined that correlated well with the experimental data. The most likely failure scenario corresponded to damage initiating in the softening strip and delamination extending to the grips at final failure
    corecore