419 research outputs found

    PLANT RADIOIODINE RELATIONSHIPS: A REVIEW.

    Full text link

    The response function of a sphere in a viscoelastic two-fluid medium

    Full text link
    In order to address basic questions of importance to microrheology, we study the dynamics of a rigid sphere embedded in a model viscoelastic medium consisting of an elastic network permeated by a viscous fluid. We calculate the complete response of a single bead in this medium to an external force and compare the result to the commonly-accepted, generalized Stokes-Einstein relation (GSER). We find that our response function is well approximated by the GSER only within a particular frequency range determined by the material parameters of both the bead and the network. We then discuss the relevance of this result to recent experiments. Finally we discuss the approximations made in our solution of the response function by comparing our results to the exact solution for the response function of a bead in a viscous (Newtonian) fluid.Comment: 12 pages, 2 figure

    Using X-ray Crystallography, Biophysics, and Functional Assays to Determine the Mechanisms Governing T-cell Receptor Recognition of Cancer Antigens.

    Get PDF
    Human CD8+ cytotoxic T lymphocytes (CTLs) are known to play an important role in tumor control. In order to carry out this function, the cell surface-expressed T-cell receptor (TCR) must functionally recognize human leukocyte antigen (HLA)-restricted tumor-derived peptides (pHLA). However, we and others have shown that most TCRs bind sub-optimally to tumor antigens. Uncovering the molecular mechanisms that define this poor recognition could aid in the development of new targeted therapies that circumnavigate these shortcomings. Indeed, present therapies that lack this molecular understanding have not been universally effective. Here, we describe methods that we commonly employ in the laboratory to determine how the nature of the interaction between TCRs and pHLA governs T-cell functionality. These methods include the generation of soluble TCRs and pHLA and the use of these reagents for X-ray crystallography, biophysical analysis, and antigen-specific T-cell staining with pHLA multimers. Using these approaches and guided by structural analysis, it is possible to modify the interaction between TCRs and pHLA and to then test how these modifications impact T-cell antigen recognition. These findings have already helped to clarify the mechanism of T-cell recognition of a number of cancer antigens and could direct the development of altered peptides and modified TCRs for new cancer therapies

    Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme

    Get PDF
    We analyze and discuss the quantum noise in signal-recycled laser interferometer gravitational-wave detectors, such as Advanced LIGO, using a heterodyne readout scheme and taking into account the optomechanical dynamics. Contrary to homodyne detection, a heterodyne readout scheme can simultaneously measure more than one quadrature of the output field, providing an additional way of optimizing the interferometer sensitivity, but at the price of additional noise. Our analysis provides the framework needed to evaluate whether a homodyne or heterodyne readout scheme is more optimal for second generation interferometers from an astrophysical point of view. As a more theoretical outcome of our analysis, we show that as a consequence of the Heisenberg uncertainty principle the heterodyne scheme cannot convert conventional interferometers into (broadband) quantum non-demolition interferometers.Comment: 16 pages, 8 figure

    Angle of repose and segregation in cohesive granular matter

    Full text link
    We study the effect of fluids on the angle of repose and the segregation of granular matter poured into a silo. The experiments are conducted in two regimes where: (i) the volume fraction of the fluid is small and it forms liquid bridges between particles, and (ii) the particles are completely immersed in the fluid. The data is obtained by imaging the pile formed inside a quasi-two dimensional silo through the transparent glass side walls. In the first series of experiments, the angle of repose is observed to increase sharply with the volume fraction of the fluid and then saturates at a value that depends on the size of the particles. We systematically study the effect of viscosity by using water-glycerol mixtures to vary it over at least three orders of magnitude while keeping the surface tension almost constant. Besides surface tension, the viscosity of the fluid is observed to have an effect on the angle of repose and the extent of segregation. In case of bidisperse particles, segregation is observed to decrease and finally saturate depending on the size ratio of the particles and the viscosity of the fluid. The sharp initial change and the subsequent saturation in the extent of segregation and angle of repose occurs over similar volume fraction of the fluid. In the second series of experiments, particles are poured into a container filled with a fluid. Although the angle of repose is observed to be unchanged, segregation is observed to decrease with an increase in the viscosity of the fluid.Comment: 9 pages, 12 figure

    Quantum Disordered Regime and Spin Gap in the Cuprate Superconductors

    Full text link
    We discuss the crossover from the quantum critical, z ⁣= ⁣1z\!=\!1, to the quantum disordered regime in high-Tc_c materials in relation to the experimental data on the nuclear relaxation, bulk susceptibility, and inelastic neutron scattering. In our scenario, the spin excitations develop a gap Δ ⁣ ⁣1/ξ\Delta\!\sim\!1/\xi well above Tc_c, which is supplemented by the quasiparticle gap below Tc_c. The above experiments yield consistent estimates for the value of the spin gap, which increases as the correlation length decreases.Comment: 14 pages, REVTeX v3.0, PostScript file for 3 figures is attached, UIUC-P-93-07-06

    Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase

    Full text link
    We investigate the upper critical field in a stripe--phase and in the presence of a phenomenological pseudogap. Our results indicate that the formation of stripes affects the Landau orbits and results in an enhancement of Hc2H_{c2}. On the other hand, phenomenologically introduced pseudogap leads to a reduction of the upper critical field. This effect is of particular importance when the magnitude of the gap is of the order of the superconducting transition temperature. We have found that a suppression of the upper critical field takes place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure

    A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy.

    Get PDF
    Antimicrobial peptides (AMPs) are a potential alternative to classical antibiotics that are yet to achieve a therapeutic breakthrough for treatment of systemic infections. The antibacterial potency of pleurocidin, an AMP from Winter Flounder, is linked to its ability to cross bacterial plasma membranes and seek intracellular targets while also causing membrane damage. Here we describe modification strategies that generate pleurocidin analogues with substantially improved, broad spectrum, antibacterial properties, which are effective in murine models of bacterial lung infection. Increasing peptide-lipid intermolecular hydrogen bonding capabilities enhances conformational flexibility, associated with membrane translocation, but also membrane damage and potency, most notably against Gram-positive bacteria. This negates their ability to metabolically adapt to the AMP threat. An analogue comprising D-amino acids was well tolerated at an intravenous dose of 15 mg/kg and similarly effective as vancomycin in reducing EMRSA-15 lung CFU. This highlights the therapeutic potential of systemically delivered, bactericidal AMPs

    Specific Heat of Liquid Helium in Zero Gravity very near the Lambda Point

    Full text link
    We report the details and revised analysis of an experiment to measure the specific heat of helium with subnanokelvin temperature resolution near the lambda point. The measurements were made at the vapor pressure spanning the region from 22 mK below the superfluid transition to 4 uK above. The experiment was performed in earth orbit to reduce the rounding of the transition caused by gravitationally induced pressure gradients on earth. Specific heat measurements were made deep in the asymptotic region to within 2 nK of the transition. No evidence of rounding was found to this resolution. The optimum value of the critical exponent describing the specific heat singularity was found to be a = -0.0127+ - 0.0003. This is bracketed by two recent estimates based on renormalization group techniques, but is slightly outside the range of the error of the most recent result. The ratio of the coefficients of the leading order singularity on the two sides of the transition is A+/A- =1.053+ - 0.002, which agrees well with a recent estimate. By combining the specific heat and superfluid density exponents a test of the Josephson scaling relation can be made. Excellent agreement is found based on high precision measurements of the superfluid density made elsewhere. These results represent the most precise tests of theoretical predictions for critical phenomena to date.Comment: 27 Pages, 20 Figure

    Cosmological evolution of interacting dark energy in Lorentz violation

    Full text link
    The cosmological evolution of an interacting scalar field model in which the scalar field interacts with dark matter, radiation, and baryon via Lorentz violation is investigated. We propose a model of interaction through the effective coupling βˉ\bar{\beta}. Using dynamical system analysis, we study the linear dynamics of an interacting model and show that the dynamics of critical points are completely controlled by two parameters. Some results can be mentioned as follows. Firstly, the sequence of radiation, the dark matter, and the scalar field dark energy exist and baryons are sub dominant. Secondly, the model also allows the possibility of having a universe in the phantom phase with constant potential. Thirdly, the effective gravitational constant varies with respect to time through βˉ\bar{\beta}. In particular, we consider a simple case where βˉ\bar{\beta} has a quadratic form and has a good agreement with the modified Λ\LambdaCDM and quintessence models. Finally, we also calculate the first post--Newtonian parameters for our model.Comment: 14 pages, published versio
    corecore