24 research outputs found
Recommended from our members
Air and shipborne magnetic surveys of the Antarctic into the 21st century
The Antarctic geomagnetics' community remains very active in crustal anomaly mapping. More than 1.5 million line-km of new air- and shipborne data have been acquired over the past decade by the international community in Antarctica. These new data together with surveys that previously were not in the public domain significantly upgrade the ADMAP compilation. Aeromagnetic flights over East Antarctica have been concentrated in the Transantarctic Mountains, the Prince Charles Mountains – Lambert Glacier area, and western Dronning Maud Land (DML) — Coats Land. Additionally, surveys were conducted over Lake Vostok and the western part of Marie Byrd Land by the US Support Office for Aerogeophysical Research projects and over the Amundsen Sea Embayment during the austral summer of 2004/2005 by a collaborative US/UK aerogeophysical campaign. New aeromagnetic data over the Gamburtsev Subglacial Mountains (120,000 line-km), acquired within the IPY Antarctica's Gamburtsev Province project reveal fundamental geologic features beneath the East Antarctic Ice sheet critical to understanding Precambrian continental growth processes. Roughly 100,000 line-km of magnetic data obtained within the International Collaboration for Exploration of the Cryosphere through Aerogeophysical Profiling promises to shed light on subglacial lithology and identify crustal boundaries for the central Antarctic Plate. Since the 1996/97 season, the Alfred Wegener Institute has collected 90,000 km of aeromagnetic data along a 1200 km long segment of the East Antarctic coast over western DML. Recent cruises by Australian, German, Japanese, Russian, British, and American researchers have contributed to long-standing studies of the Antarctic continental margin. Along the continental margin of East Antarctica west of Maud Rise to the George V Coast of Victoria Land, the Russian Polar Marine Geological Research Expedition and Geoscience Australia obtained 80,000 and 20,000 line-km, respectively, of integrated seismic, gravity and magnetic data. Additionally, US expeditions collected 128,000 line-km of shipborne magnetic data in the Ross Sea sector
Interpretation of ground and aeromagnetic surveys of Palmer Land, Antarctic Peninsula
Aeromagnetic data for Palmer Land provide new information on crustal structures of the Antarctic Peninsula. Features shown on the compilation of the Lassiter Coast and Orville Coast are characterized by systems of subparallel regional anomaly zones and lineaments. The magnetic data reveal the widespread presence of an orthogonal pattern of crosscutting linear discontinuities that can be interpreted as a Late Cretaceous/Early Tertiary fracture pattern. The main displacements in the anomaly pattern between the two units are recognized in Wetmore-Irvine glaciers area where the structure of the Antarctic Peninsula changes orientation from SW-NE to S-N. The NW-SE trending transitional zone is probably a transfer zone associated with north-westerly movement of the Lassiter Coast crustal segment relative to the Orville Coast segment. Within the Lassiter Coast a fragment of Pacific Margin Anomaly (PMA), Central Plateau Magnetic Anomaly and East Coast Magnetic Anomaly (ECMA) are mapped. Two-dimensional modelling suggests that PMA is caused by a limited depth body (8 km) consisting of numerous plutons, probably, of different ages, composition and magnetization. The Central Plateau Magnetic Anomaly and the Merrick-Sweeney-Latady zone of the Orville Coast are represented by strong positive anomaly bands that are associated with gabbro-diorite rocks and accompanying plutons intruded near by the border of Mount Poster Formation and Latady Formation. The ECMA are alignments of high-amplitude magnetic anomalies caused by gabbro-diorite bodies, which are located within the framework of the Cretaceous granite-granodiorite plutons. Granite-granodiorite plutons of Lassiter Coast Intrusive Suite are mostly reflected by positive anomalies (100-500 nT). Modelling studies and the character of distribution of the magnetic anomalies suggest that the plutons of Lassiter Coast Intrusive Suite are prominently reflected in magnetic anomalies of regional extent. The plutonic activities during the geological evolution of Palmer Land have been a more important process than what is apparent from rock outcrops. Magmatic activity abruptly diminished westward from the Behrendt Mountains apparently due to a modification of the crustal structure of the Antarctic Peninsula. The area between the Evans Ice Stream and the Behrendt Mountains is possibly underlain by the non-magnetic equivalent of the Haag Nunataks basement, similar to that which has been inferred for the Ellsworth Mountains
Interpretation of ground and aeromagnetic surveys of Palmer Land, Antarctic Peninsula
Aeromagnetic data for Palmer Land provide new information on crustal structures of the Antarctic Peninsula. Features shown on the compilation of the Lassiter Coast and Orville Coast are characterized by systems of subparallel regional anomaly zones and lineaments. The magnetic data reveal the widespread presence of an orthogonal pattern of crosscutting linear discontinuities that can be interpreted as a Late Cretaceous/Early Tertiary fracture pattern. The main displacements in the anomaly pattern between the two units are recognized in Wetmore-Irvine glaciers area where the structure of the Antarctic Peninsula changes orientation from SW-NE to S-N. The NW-SE trending transitional zone is probably a transfer zone associated with north-westerly movement of the Lassiter Coast crustal segment relative to the Orville Coast segment. Within the Lassiter Coast a fragment of Pacific Margin Anomaly (PMA), Central Plateau Magnetic Anomaly and East Coast Magnetic Anomaly (ECMA) are mapped. Two-dimensional modelling suggests that PMA is caused by a limited depth body (8 km) consisting of numerous plutons, probably, of different ages, composition and magnetization. The Central Plateau Magnetic Anomaly and the Merrick-Sweeney-Latady zone of the Orville Coast are represented by strong positive anomaly bands that are associated with gabbro-diorite rocks and accompanying plutons intruded near by the border of Mount Poster Formation and Latady Formation. The ECMA are alignments of high-amplitude magnetic anomalies caused by gabbro-diorite bodies, which are located within the framework of the Cretaceous granite-granodiorite plutons. Granite-granodiorite plutons of Lassiter Coast Intrusive Suite are mostly reflected by positive anomalies (100-500 nT). Modelling studies and the character of distribution of the magnetic anomalies suggest that the plutons of Lassiter Coast Intrusive Suite are prominently reflected in magnetic anomalies of regional extent. The plutonic activities during the geological evolution of Palmer Land have been a more important process than what is apparent from rock outcrops. Magmatic activity abruptly diminished westward from the Behrendt Mountains apparently due to a modification of the crustal structure of the Antarctic Peninsula. The area between the Evans Ice Stream and the Behrendt Mountains is possibly underlain by the non-magnetic equivalent of the Haag Nunataks basement, similar to that which has been inferred for the Ellsworth Mountains
Magnetic anomaly map of the Weddell Sea Region, Antarctic (Scale 1:2 500 000)
This paper describes a 1 : 2 500 000 scale aeromagnetic anomaly map produced by the joint efforts of VNIIOkeangeologia, Polar Marine Geological Research Expedition (PMGRE) and the Alfred Wegener Institute for Polar and Marine Research (AWl) for the Weddell Sea region covering 1 850 000 km' of West Antarctica. Extensive regional magnetic survey flights with line-spacing of about 20 km and 5 km were carried out by the PMGRE between 1977 and 1989. In course of these investigations the PMGRE flew 9 surveys with flight-line spacing of 20 km and 6 surveys with flight-line spacing of 5 km mainly over the mountain areas of southern Palmer Land, western Dronning Maud Land, Coats Land and Pensacola Mountains, over the Ronne lee Shelf and the Filchner Ice Shelf and the central part of the Weddell Sea. More than 215 000 line-kilometers of total field aeromagnetic data have been acquired by using an Ilyushin Il-14 ski-equipped aircraft. Survey operations were centered on the field base stations Druzhnaya-1, -2, and -3, from which the majority of the Weddell Sea region network was completed. The composite map of the Weddell Sea region is prepared in colour, showing magnetic anomaly contours at intervals of 50-100 nT with supplemental contours at an interval of 25 nT in low gradient areas, on a polar stereographic projection.
The compiled colour magnetic anomaly map of the Weddell Sea region demonstrates that features of large areal extent, such as geologic provinces, fold-belts, ancient eratonic fragments and other regional structural features can be readily delineated. The map allows a comparison of regional magnetic features with similar-scale geological structures on geological and geophysical maps. It also provides a database for the future production of the ''Digital Magnetic Anomaly Map of Antarctica'' in the framework of the Scientific Committee on Antarctic Research/International Association of Geomagnetism and Aeronomy (SCAR/IAGA) compilation
Forty-seven new subglacial lakes in the 0–1108 E sector of
ABSTRACT. During the summer field seasons of 1987–91, studies of central East Antarctica by airborne radio-echo sounding commenced. This scientific work continued in the 1990s in the Vostok Subglacial Lake area and along the traverse route from Mirny, and led to the discovery of 16 new subglacial water cavities in the areas of Domes Fuji and Argus and the Prince Charles Mountains. Twenty-nine subglacial water cavities were revealed in the area near Vostok, along with a feature we believe to be a subglacial river. Two subglacial lakes were discovered along the Mirny–Vostok traverse route. These are located 50 km north of Komsomolskaya station and under Pionerskaya station. We find high geothermal heat flux in the vicinity of the largest of the subglacial lakes, and suggest this may be due to their location over deep faults where additional mantle heat is available. 1
NATIONAL SEISMIC, RADAR AND SEISMOLOGICAL STUDIES OF SUBGLACIAL LAKE VOSTOK
The results of the remote sensing which carried out in the LakeVostokarea are discussed in the paper. A.P. Kapitsa and O.G. Sorokhtin started the geophysical researches in this area in 1950s. Satellite altimetry data, which analyzed in 1990s yielded to the discovering of the LakeVostok. After that, PMGE and RAE started the systematic studying of this natural phenomenon by seismic and radio-echo sounding. Total, 318 seismic soundings and 5190 kmof the radio-echo profiles has been collected by 2008. Special precise measurements which carried out in the 5G-1 borehole vicinity are resulted in the ice thickness over Vostok Station is 3760±30 mby seismic and 3775±15 mby radio-echo sounding. Thus, the error of geophysical measurements is less than 0.3%. The Russian investigations are resulted in definition the border of the lake, the discovering of 56 subglacial water caves around the lake and compilation the maps including ice thickness, ice base and bedrock topography and the depth of the lake. Average depth of the LakeVostokis about 400 m; water volume is 6100 km3. After 2008, the remote sensing works have been concentrated to the studying of the bottom sediments by refraction seismic technique. The firsts result shown that the bottom sediments thickness varies from 400 to1200 m