20 research outputs found

    Structural evolution of a crustal‐scale seismogenic fault in a magmatic arc: The Bolfin Fault Zone (Atacama Fault System)

    Get PDF
    How major crustal-scale seismogenic faults nucleate and evolve in crystalline basements represents a long-standing, but poorly understood, issue in structural geology and fault mechanics. Here, we address the spatio-temporal evolution of the Bolfin Fault Zone (BFZ), a >40-km-long exhumed seismogenic splay fault of the 1000-km-long strike-slip Atacama Fault System. The BFZ has a sinuous fault trace across the Mesozoic magmatic arc of the Coastal Cordillera (Northern Chile) and formed during the oblique subduction of the Aluk plate beneath the South American plate. Seismic faulting occurred at 5–7 km depth and ≀ 300°C in a fluid-rich environment as recorded by extensive propylitic alteration and epidote-chlorite veining. Ancient (125–118 Ma) seismicity is attested by the widespread occurrence of pseudotachylytes. Field geologic surveys indicate nucleation of the BFZ on precursory geometrical anisotropies represented by magmatic foliation of plutons (northern and central segments) and andesitic dyke swarms (southern segment) within the heterogeneous crystalline basement. Seismic faulting exploited the segments of precursory anisotropies that were optimal to favorably oriented with respect to the long-term far-stress field associated with the oblique ancient subduction. The large-scale sinuous geometry of the BFZ resulted from the hard linkage of these anisotropy-pinned segments during fault growth

    Frictional Melting in Hydrothermal Fluid-Rich Faults: Field and Experimental Evidence From the Bolfin Fault Zone (Chile)

    Get PDF
    Tectonic pseudotachylytes are thought to be unique to certain water-deficient seismogenic environments and their presence is considered to be rare in the geological record. Here, we present field and experimental evidence that frictional melting can occur in hydrothermal fluid-rich faults hosted in the continental crust. Pseudotachylytes were found in the >40 km-long Bolf\uedn Fault Zone of the Atacama Fault System, within two ca. 1 m-thick (ultra)cataclastic strands hosted in a damage-zone made of chlorite-epidote-rich hydrothermally altered tonalite. This alteration state indicates that hydrothermal fluids were active during the fault development. Pseudotachylytes, characterized by presenting amygdales, cut and are cut by chlorite-, epidote- and calcite-bearing veins. In turn, crosscutting relationship with the hydrothermal veins indicates pseudotachylytes were formed during this period of fluid activity. Rotary shear experiments conducted on bare surfaces of hydrothermally altered rocks at seismic slip velocities (3\ua0m s 121) resulted in the production of vesiculated pseudotachylytes both at dry and water-pressurized conditions, with melt lubrication as the primary mechanism for fault dynamic weakening. The presented evidence challenges the common hypothesis that pseudotachylytes are limited to fluid-deficient environments, and gives insights into the ancient seismic activity of the system. Both field observations and experimental evidence, indicate that pseudotachylytes may easily be produced in hydrothermal environments, and could be a common co-seismic fault product. Consequently, melt lubrication could be considered one of the most efficient seismic dynamic weakening mechanisms in crystalline basement rocks of the continental crust

    Architecture of active extensional faults in carbonates: Campo Felice and Monte D'Ocre faults, Italian Apennines

    No full text
    To understand better the development of deformation in carbonate-hosted normal faults, we compared the structural architecture of the Campo Felice and Monte D'Ocre active faults (Italian central Apennines). The two geometrically linked structures displace the same carbonate sequences, but with different Quaternary slip rates and geological throws. Moreover, several geomorphological features typical of deep-seated landslides were identified across the Mt. D'Ocre range. The Campo Felice fault segment and the Cama fault segment (Monte D'Ocre range) consist of 0.4–15 m thick and almost absent fault cores and of >400 m and <40 m thick damage zones, respectively. The associated slip zones have different fabrics (i.e., cataclasite vs. crush fault breccia for Campo Felice and Cama Fault, respectively). The different fault zone architecture and associated landscapes would suggest different behaviors of the two faults although similar deformation mechanisms (i.e., cataclasis and pressure-solution) are active in both the two scarps. The Mt. D'Ocre faults would not be segments of the Ovindoli-L'Aquila Fault System and currently accommodate the lateral spreading of the Mt. D'Ocre ridge. Therefore, the seismic hazard associated with the fault system might be reduced. This work shows how macro-to micro-structural analyses provide further information to improve the structural characterization of seismogenic sources

    Along-strike architectural variability of an exhumed crustal-scale seismogenic fault (Bolfin Fault Zone, Atacama Fault System, Chile)

    No full text
    Fault zone architecture and its internal structural variability play a pivotal role in earthquake mechanics, by controlling, for instance, the nucleation, propagation and arrest of individual seismic ruptures and the evolution in space and time of foreshock and aftershock seismic sequences. Nevertheless, the along-strike architectural variability of crustal-scale seismogenic sources over regional distances is still poorly investigated. Here, we describe the architectural variability of the >40-km-long exhumed, seismogenic Bolfin Fault Zone (BFZ) of the intra-arc Atacama Fault System (Northern Chile). The BFZ cuts through plutonic rocks of the Mesozoic Coastal Cordillera and was seismically active at 5-7 km depth and <= 300 degrees C in a fluid-rich environment. The BFZ in-cludes multiple altered fault core strands, consisting of chlorite-rich cataclasites-ultracataclasites and pseudo-tachylytes, surrounded by chlorite-rich protobreccias to protocataclasites over a zone up to 60-m-thick. These fault rocks are embedded within a low-strain damage zone, up to 150-m-thick, which includes strongly altered volumes of dilatational hydrothermal breccias and clusters of epidote-rich fault-vein networks at the linkage of the BFZ with subsidiary faults. The strong hydrothermal alteration of rocks along both the fault core and the damage zone attests to an extensive percolation of fluids across all the elements of the structural network during the activity of the entire fault zone. In particular, we interpret the epidote-rich fault-vein networks and associated breccias as an exhumed example of upper-crustal fluid-driven earthquake swarms, similar to the presently active intra-arc Liquin similar to e-Ofqui Fault System (Southern Andean Volcanic Zone, Chile)

    Structural Evolution of a Crustal-Scale Seismogenic Fault in a Magmatic Arc: The Bolfin Fault Zone (Atacama Fault System)

    Get PDF
    How major crustal-scale seismogenic faults nucleate and evolve in crystalline basements represents a long-standing, but poorly understood, issue in structural geology and fault mechanics. Here, we address the spatio-temporal evolution of the Bolfin Fault Zone (BFZ), a >40-km-long exhumed seismogenic splay fault of the 1000-km-long strike-slip Atacama Fault System. The BFZ has a sinuous fault trace across the Mesozoic magmatic arc of the Coastal Cordillera (Northern Chile) and formed during the oblique subduction of the Aluk plate beneath the South American plate. Seismic faulting occurred at 5\u20137\ua0km depth and 64 300\ub0C in a fluid-rich environment as recorded by extensive propylitic alteration and epidote-chlorite veining. Ancient (125\u2013118\ua0Ma) seismicity is attested by the widespread occurrence of pseudotachylytes. Field geologic surveys indicate nucleation of the BFZ on precursory geometrical anisotropies represented by magmatic foliation of plutons (northern and central segments) and andesitic dyke swarms (southern segment) within the heterogeneous crystalline basement. Seismic faulting exploited the segments of precursory anisotropies that were optimal to favorably oriented with respect to the long-term far-stress field associated with the oblique ancient subduction. The large-scale sinuous geometry of the BFZ resulted from the hard linkage of these anisotropy-pinned segments during fault growth
    corecore