2 research outputs found

    FeCoCp3 Molecular Magnets as Spin Filters

    Get PDF
    Metallorganic molecules have been proposed as excellent spin filters in molecular spintronics because of the large spin-polarization of their electronic structure. However, most of the studies involving spin transport, have disregarded fundamental aspects such as the magnetic anisotropy of the molecule and the excitation of spin-flip processes during electron transport. Here, we study a molecule containing a Co and an Fe atoms stacked between three cyclopentadienyl rings that presents a large magnetic anisotropy and a S=1. These figures are superior to other molecules with the same transition metal, and improves the spin-filtering capacities of the molecule. Non-equilibrium Green's functions calculations based on density functional theory predict excellent spin-filtering properties both in tunnel and contact transport regimes. However, exciting the first magnetic state drastically reduces the current's spin polarization. Furthermore, a difference of temperature between electrodes leads to strong thermoelectric effects that also suppress spin polarization. Our study shows that in-principle good molecular candidates for spintronics need to be confronted with inelastic and thermoelectric effects
    corecore