5 research outputs found

    Genomic and functional impact of Trp53 inactivation in JAK2V617F myeloproliferative neoplasms

    No full text
    International audienceAbstract Classical myeloproliferative neoplasms (MPNs) are characterized by the proliferation of myeloid cells and the risk of transformation into myelofibrosis or acute myeloid leukemia (AML) and TP53 mutations in MPN patients are linked to AML. However, JAK2V617F has been reported to impact the TP53 response to DNA damage, suggesting potential overlapping role of TP53 inactivation in MPN. We established a mouse model showing that JAK2V617F/Vav-Cre/Trp53 −/− mice displayed a similar phenotype to JAK2V617F/Vav-Cre mice, but their proliferation was outcompeted in competitive grafts. RNA-Seq revealed that half of the genes affected by JAK2V617F were affected by p53-inactivation, including the interferon pathway. To validate this finding, mice were repopulated with a mixture of wild-type and JAK2V617F (or JAK2V617F/Vav-Cre/Trp53 −/− ) cells and treated with pegylated interferonα. JAK2V617F-reconstituted mice entered complete hematological remission, while JAK2V617F/Vav-Cre /Trp53 −/− -reconstituted mice did not, confirming that p53 loss induced interferon-α resistance. KEGG and Gene Ontology analyses of common deregulated genes showed that these genes were mainly implicated in cytokine response, proliferation, and leukemia evolution, illustrating that in this mouse model, the development of MPN is not affected by TP53 inactivation. Taken together, our results show that many genetic modifications induced by JAK2V617F are influenced by TP53, the MPN phenotype may not be. Trp53 loss alone is insufficient to induce rapid leukemic transformation in steady-state hematopoiesis in JAK2V617F MPN, and Trp53 loss may contribute to interferon resistance in MPN

    JAK2V617F myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML

    No full text
    International audienceInterferon α (IFNα) is used to treat JAK2 V617F-driven myeloproliferative neoplasms (MPNs) but rarely clears the disease. We investigated the IFNα mechanism of action focusing on PML, an interferon target and key senescence gene whose targeting by arsenic trioxide (ATO) drives eradication of acute promyelocytic leukemia. ATO sharply potentiated IFNα-induced growth suppression of JAK2 V617F patient or mouse hematopoietic progenitors, which required PML and was associated with features of senescence. In a mouse MPN model, combining ATO with IFNα enhanced and accelerated responses, eradicating MPN in most mice by targeting disease-initiating cells. These results predict potent clinical efficacy of the IFNα+ATO combination in patients and identify PML as a major effector of therapy, even in malignancies with an intact PML gene.

    Molecular profiling and risk classification of patients with myeloproliferative neoplasms and splanchnic vein thromboses

    No full text
    Myeloproliferative neoplasms (MPNs) are the most frequent underlying causes of splanchnic vein thromboses (SVTs). MPN patients with SVTs (MPN-SVT) often have a unique presentation including younger age, female predominance, and low Janus kinase 2 (JAK2) mutation allele burden. This study aimed at identifying risk factors for adverse hematologic outcomes in MPN-SVT patients. We performed a retrospective study of a fully characterized cohort of MPN-SVT patients. The primary outcome was the incidence of evolution to myelofibrosis, acute leukemia, or death. Eighty patients were included in the testing cohort. Median follow-up was 11 years. Most of the patients were women with a mean age of 42 years and a diagnosis of polycythemia vera. The primary outcome was met in 13% of the patients and was associated with a JAK2V617F allele burden 6550% (odds ratio [OR], 14.7) and presence of additional mutations in genes affecting chromatin/spliceosome (OR, 9). We identified high-risk patients (29% of the cohort) as those harboring at least 1 molecular risk factor: JAK2-mutant allele burden 6550%, presence of chromatin/spliceosome/TP53 mutation. High-risk patients had worse event-free survival (81% vs 100%; P = .001) and overall survival at 10 years (89% vs 100%; P = .01) than low-risk patients. These results were confirmed in an independent validation cohort of 30 MPN-SVT patients. In conclusion, molecular profiling identified MPN-SVT patients with dismal outcome. In this high-risk population, a disease-modifying therapy should be taken into consideration to minimize the probability of transformation
    corecore