594 research outputs found

    Biolayer Interferometry: Protein-RNA Interactions.

    Get PDF
    RNA-binding proteins often contain multiple RNA-binding domains connected by short flexible linkers. This domain arrangement allows the protein to bind the RNA with greater affinity and specificity than would be possible with individual domains and sometimes to remodel its structure. It is therefore important to understand how multiple modules interact with RNA because it is the modular nature of these proteins which specifies their biological function. This chapter is concerned with the use of biolayer interferometry to study protein-RNA interactions

    Ketogenic Diets and Pain [post-print]

    Get PDF
    Ketogenic diets are well established as a successful anticonvulsant therapy. Based on overlap between mechanisms postulated to underlie pain and inflammation, and mechanisms postulated to underlie therapeutic effects of ketogenic diets, recent studies have explored the ability for ketogenic diets to reduce pain. Here we review clinical and basic research thus far exploring the impact of a ketogenic diet on thermal pain, inflammation, and neuropathic pain

    The Nervous System and Metabolic Dysregulation: Emerging Evidence Converges on Ketogenic Diet Therapy

    Get PDF
    A link between metabolism and brain function is clear. Since ancient times, epileptic seizures were noted as treatable with fasting, and historical observations of the therapeutic benefits of fasting on epilepsy were confirmed nearly 100 years ago. Shortly thereafter a high fat, low-carbohydrate ketogenic diet (KD) debuted as a therapy to reduce seizures. This strict regimen could mimic the metabolic effects of fasting while allowing adequate caloric intake for ongoing energy demands. Today, KD therapy, which forces predominantly ketone-based rather than glucose-based metabolism, is now well-established as highly successful in reducing seizures. Cellular metabolic dysfunction in the nervous system has been recognized as existing side-by-side with nervous system disorders – although often with much less obvious cause-and-effect as the relationship between fasting and seizures. Rekindled interest in metabolic and dietary therapies for brain disorders complements new insight into their mechanisms and broader implications. Here we describe the emerging relationship between a KD and adenosine as a way to reset brain metabolism and neuronal activity and disrupt a cycle of dysfunction. We also provide an overview of the effects of a KD on cognition and recent data on the effects of a KD on pain, and explore the relative time course quantified among hallmark metabolic changes, altered neuron function and altered animal behavior assessed after diet administration. We predict continued applications of metabolic therapies in treating dysfunction including and beyond the nervous system

    Phonons and structures of tetracene polymorphs at low temperature and high pressure

    Full text link
    Crystals of tetracene have been studied by means of lattice phonon Raman spectroscopy as a function of temperature and pressure. Two different phases (polymorphs I and II) have been obtained, depending on sample preparation and history. Polymorph I is the most frequently grown phase, stable at ambient conditions. A pressure induced phase transition, observed above 1 GPa, leads to polymorph II, which is also obtained at temperatures below 140 K. Polymorph II can also be maintained at ambient conditions. We have calculated the crystallographic structures and phonon frequencies as a function of temperature, starting from the configurations of the energy minima found by exploring the potential energy surface of crystalline tetracene. The spectra calculated for the first and second deepest minima match satisfactorily those measured for polymorphs I and II, respectively. All published x-ray structures, once assigned to the appropriate polymorph, are also reproduced.Comment: 8 pages, 5 figures, RevTeX4, update after referees report

    Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches

    Get PDF
    Autism spectrum disorder (ASD) is characterized by deficits in sociability and communication, and increased repetitive and/or restrictive behaviors. While the etio-pathogenesis of ASD is unknown, clinical manifestations are diverse and many possible genetic and environmental factors have been implicated. As such, it has been a great challenge to identify key neurobiological mechanisms and to develop effective treatments. Current therapies focus on co-morbid conditions (such as epileptic seizures and sleep disturbances) and there is no cure for the core symptoms. Recent studies have increasingly implicated mitochondrial dysfunction in ASD. The fact that mitochondria are an integral part of diverse cellular functions and are susceptible to many insults could explain how a wide range of factors can contribute to a consistent behavioral phenotype in ASD. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), used for nearly a century to treat medically intractable epilepsy, has been shown to enhance mitochondrial function through a multiplicity of mechanisms and affect additional molecular targets that may address symptoms and comorbidities of ASD. Here, we review the evidence for the use of metabolism-based therapies such as the KD in the treatment of ASD as well as emerging co-morbid models of epilepsy and autism. Future research directions aimed at validating such therapeutic approaches and identifying additional and novel mechanistic targets are also discussed

    Adenosine A\u3csub\u3e1\u3c/sub\u3e receptor-mediated protection of mouse hippocampal synaptic transmission against oxygen and/or glucose deprivation: A comparative study

    Get PDF
    © 2019 the American Physiological Society. Adenosine receptors are widely ex-pressed in the brain, and adenosine is a key bioactive substance for neuroprotection. In this article, we clarify systematically the role of adenosine A1 receptors during a range of timescales and conditions when a significant amount of adenosine is released. Using acute hippocampal slices obtained from mice that were wild type or null mutant for the adenosine A1 receptor, we quantified and characterized the impact of varying durations of experimental ischemia, hypoxia, and hypoglycemia on synaptic transmission in the CA1 subregion. In normal tissue, these three stressors rapidly and markedly reduced synaptic transmission, and only treatment of sufficient duration led to incomplete recovery. In contrast, inactivation of adenosine A1 receptors delayed and/or lessened the reduction in synaptic transmission during all three stressors and reduced the magnitude of the recovery significantly. We reproduced the responses to hypoxia and hypoglycemia by applying an adenosine A1 receptor antagonist, validating the clear effects of genetic receptor inactivation on synaptic transmission. We found activation of adenosine A1 receptor inhibited hippocampal synaptic transmission during the acute phase of ischemia, hypoxia, or hypoglycemia and caused the recovery from synaptic impairment after these three stressors using genetic mutant. These studies quantify the neuroprotective role of the adenosine A1 receptor during a variety of metabolic stresses within the same recording system. NEW & NOTEWORTHY Deprivation of oxygen and/or glucose causes a rapid adenosine A1 receptor-mediated decrease in synaptic transmission in mouse hippocampus. We quantified adenosine A1 receptor-mediated inhibition during and synaptic recovery after ischemia, hypoxia, and hypoglycemia of varying durations using a genetic mutant and confirmed these findings using pharmacology. Overall, using the same recording conditions, we found the acute response and the neuroprotective ability of the adenosine A1 receptor depended on the type and duration of deprivation event

    Metabolic Autocrine Regulation of Neurons Involves Cooperation Among Pannexin Hemichannels, Adenosine Receptors and KATP Channels

    Get PDF
    Metabolic perturbations that decrease or limit blood glucose—such as fasting or adhering to a ketogenic diet—reduce epileptic seizures significantly. To date, the critical links between altered metabolism and decreased neuronal activity remain unknown. More generally, metabolic changes accompany numerous CNS disorders, and the purines ATP and its core molecule adenosine are poised to translate cell energy into altered neuronal activity. Here we show that nonpathological changes in metabolism induce a purinergic autoregulation of hippocampal CA3 pyramidal neuron excitability. During conditions of sufficient intracellular ATP, reducing extracellular glucose induces pannexin-1 hemichannel-mediated ATP release directly from CA3 neurons. This extracellular ATP is dephosphorylated to adenosine, activates neuronal adenosine A1 receptors, and, unexpectedly, hyperpolarizes neuronal membrane potential via ATP-sensitive K+ channels. Together, these data delineate an autocrine regulation of neuronal excitability via ATP and adenosine in a seizure-prone subregion of the hippocampus and offer new mechanistic insight into the relationship between decreased glucose and increased seizure threshold. By establishing neuronal ATP release via pannexin hemichannels, and hippocampal adenosine A1 receptors coupled to ATP-sensitive K+ channels, we reveal detailed information regarding the relationship between metabolism and neuronal activity and new strategies for adenosine-based therapies in the CNS
    corecore