52 research outputs found

    Robotic Upper Limb Rehabilitation after Acute Stroke by NeReBot: Evaluation of Treatment Costs

    Get PDF
    Stroke is the first cause of disability. Several robotic devices have been developed for stroke rehabilitation. Robot therapy by NeReBot is demonstrated to be an effective tool for the treatment of poststroke paretic upper limbs, able to improve the activities of daily living of stroke survivors when used both as additional treatment and in partial substitution of conventional rehabilitation therapy in the acute and subacute phases poststroke. This study presents the evaluation of the costs related to delivering such therapy, in comparison with conventional rehabilitation treatment. By comparing several NeReBot treatment protocols, made of different combinations of robotic and nonrobotic exercises, we show that robotic technology can be a valuable and economically sustainable aid in the management of poststroke patient rehabilitation

    An integrated approach identifies new oncotargets in melanoma

    Get PDF
    Melanoma is an aggressive skin cancer; an early detection of the primary tumor may improve its prognosis. Despite many genes have been shown to be involved in melanoma, the full framework of melanoma transformation has not been completely explored. The characterization of pathways involved in tumor restraint in in vitro models may help to identify oncotarget genes. We therefore aimed to probe novel oncotargets through an integrated approach involving proteomic, gene expression and bioinformatic analysis We investigated molecular modulations in melanoma cells treated with ascorbic acid, which is known to inhibit cancer growth at high concentrations. For this purpose a proteomic approach was applied. A deeper insight into ascorbic acid anticancer activity was achieved; the discovery of deregulated processes suggested further biomarkers. In addition, we evaluated the expression of identified genes as well as the migration ability in several melanoma cell lines. Data obtained by a multidisciplinary approach demonstrated the involvement of Enolase 1 (ENO1), Parkinsonism-associated deglycase (PARK7), Prostaglansin E synthase 3 (PTGES3), Nucleophosmin (NPM1), Stathmin 1 (STMN1) genes in cell transformation and identified Single stranded DNA binding protein 1 (SSBP1) as a possible onco-suppressor in melanoma cancer

    Percutaneous “edge-to-edge” leaflet repair in patients with secondary mitral valve regurgitation

    No full text
    Functional or secondary mitral regurgitation (MR) is a heterogeneous entity afflicting patients with heart failure both with reduced or preserved left ventricular ejection fraction. It results from an imbalance between closing forces and tethering or pushing strengths acting on the valve in the absence of structural alterations of mitral valve (MV) apparatus. According to previous studies, more than 20% of patients with heart failure and reduced left ventricular ejection fraction have severe MR, even though the definition of the severity of the MV disease in this setting remains a debated issue due to the poor reproducibility of quantitative measurements and its dynamic nature, highly dependent on left ventricular loading conditions and performance in relation to optimization of medical treatment. Furthermore, it is still unclear whether MR is a direct contributor to a worse prognosis or merely a marker of severity of the disease affecting the left ventricle. Isolated MV surgery in these patients is burdened by significant operative mortality, high rates of recurrent MR and absence of proven survival benefit. In recent years, percutaneous treatment of functional MR arose as a viable and safe alternative to conventional surgery, proving capable of reducing symptoms and recurrent hospitalization rates for heart failure, and even improving prognosis in selected patients. In this review we will discuss the percutaneous treatment of functional MR through transcatheter “edge-to-edge” leaflet repair performed with the two systems currently available: the MitraClip System and the PASCAL Repair System, from available evidence to technical practice

    Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: Focused review and results of new randomized controlled trial

    No full text
    The successful motor rehabilitation of stroke patients requires early intensive and task-specific therapy. A recent Cochrane Review, although based on a limited number of randomized controlled trials (RCTs), showed that early robotic training of the upper limb (i.e., during acute or subacute phase) can enhance motor learning and improve functional abilities more than chronic-phase training. In this article, a new subacute-phase RCT with the Neuro-RehabilitationroBot (NeReBot) is presented. While in our first study we used the NeReBot in addition to conventional therapy, in this new trial we used the same device in substitution of standard proximal upper-limb rehabilitation. With this protocol, robot patients achieved similar reductions in motor impairment and enhancements in paretic upper-limb function to those gained by patients in a control group. By analyzing these results and those of previous studies, we hypothesize a new robotic protocol for acute and subacute stroke patients based on both treatment modalities (in addition and in substitution)

    Percutaneous “edge-to-edge” leaflet repair in patient with primary mitral valve regurgitation

    No full text
    Mitral regurgitation (MR) is the most common left-sided heart valve disease in developed countries with a constantly rising number of patients requiring hospitalization or intervention. Organic MR is defined as a primary structural abnormality of the mitral valve (MV) apparatus which may be caused by a broad set of pathological processes, among which myxomatous degeneration of the leaflets causing MV prolapse is the most common. If left untreated, chronic severe MR leads to serious adverse outcomes, from heart failure to death, but medical therapy is unable to change the natural history of the disease. Surgical correction, by means of valve repair or replacement, is the gold standard for the treatment of symptomatic patients with severe primary MR. However, surgery is not feasible for a large percentage of patients because of old age, reduced left ventricular ejection fraction and the presence of severe comorbidities. Therefore, in recent years, several percutaneous therapeutic alternatives suitable for high or prohibitive surgical risk patients were developed. In this review we discuss the transcatheter treatment of primary MR, from available evidence to technical practice, with a focus on the percutaneous “edge-to-edge” leaflet repair performed with the MitraClip System and the PASCAL Repair System

    Robotic Technologies and Rehabilitation: New Tools for Stroke Patients’ Therapy

    Get PDF
    Introduction. The role of robotics in poststroke patients’ rehabilitation has been investigated intensively. This paper presents the state-of-the-art and the possible future role of robotics in poststroke rehabilitation, for both upper and lower limbs. Materials and Methods. We performed a comprehensive search of PubMed, Cochrane, and PeDRO databases using as keywords “robot AND stroke AND rehabilitation.” Results and Discussion. In upper limb robotic rehabilitation, training seems to improve arm function in activities of daily living. In addition, electromechanical gait training after stroke seems to be effective. It is still unclear whether robot-assisted arm training may improve muscle strength, and which electromechanical gait-training device may be the most effective for walking training implementation. Conclusions. In the field of robotic technologies for stroke patients’ rehabilitation we identified currently relevant growing points and areas timely for developing research. Among the growing points there is the development of new easily transportable, wearable devices that could improve rehabilitation also after discharge, in an outpatient or home-based setting. For developing research, efforts are being made to establish the ideal type of treatment, the length and amount of training protocol, and the patient’s characteristics to be successfully enrolled to this treatment

    When to Achieve Complete Revascularization in Infarct-Related Cardiogenic Shock

    No full text
    Acute myocardial infarction (AMI) complicated by cardiogenic shock (CS) is a life-threatening condition frequently encountered in patients with multivessel coronary artery disease (CAD). Despite prompt revascularization, in particular, percutaneous coronary intervention (PCI), and therapeutic and technological advances, the mortality rate for patients with CS related to AMI remains unacceptably high. Differently form a hemodynamically stable setting, a culprit lesion-only (CLO) revascularization strategy is currently suggested for AMI-CS patients, based on the results of recent randomized evidence burdened by several limitations and conflicting results from non-randomized studies. Furthermore, mechanical circulatory support (MCS) devices have emerged as a key therapeutic option in CS, especially in the case of their early implantation without delaying revascularization and before irreversible organ damage has occurred. We provide an in-depth review of the current evidence on optimal revascularization strategies of multivessel CAD in infarct-related CS, assessing the role of different types of MCS devices and highlighting the importance of shock teams and medical care system networks to effectively impact on clinical outcomes

    A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs

    No full text
    Background and Aims: In this pilot study we introduce \u201cNeReBot\u201d, a novel robotic device designed and programmed for clinical neurological applications. The aim of the study was to test whether additional sensorimotor training of the paralyzed or paretic upper limb, delivered by NeReBot, enhanced motor and functional outcome in stroke patients. Methods: Twenty patients with post-stroke hemiparesis or hemiplegia received standard post-stroke multidisciplinary rehabilitation, and were randomly assigned either to exposure to the robotic device without training or to additional sensorimotor robotic training (about 4 h/week) for 4 weeks. Said training consisted of peripheral manipulation of the impaired limb (passive and active-assisted exercising of the shoulder and elbow) with correlated visual and acoustic stimuli. Results: At hospital discharge, impairment and disability had declined in all the patients, but the group with robot training showed higher gains on motor impairment and functional recovery, which were maintained at the 3-month follow-up. No adverse events resulted from robot-assisted therapy. Conclusions: According to our results, NeReBot therapy may efficaciously complement standard post-stroke multidisciplinary rehabilitation and offer novel therapeutic strategies for neurological rehabilitatio
    • …
    corecore