31 research outputs found

    Developing countries and neglected diseases: challenges and perspectives

    Get PDF
    It is now commonly admitted that the so-called (most) neglected tropical diseases have been given little attention. According to World Health Organization, neglected diseases are hidden diseases as they affect almost exclusively extremely poor populations living in remote areas beyond the reach of health service. The European Parliament recognised that, to our shame, Neglected Diseases have not received the attention they deserve from EU actions. In the Millennium Development Goals they were given very little attention and mentioned just as other disease. Investing in drugs for these diseases is thought to be not marketable or profitable. However, despite their low mortality, neglected diseases are causing severe and permanent disabilities and deformities affecting approximately 1 billion people in the world, yielding more than 20 millions of Disability Adjusted Life Years (56.6 million according to Lancet's revised estimates) and important socio-economic losses. Urgent pragmatic and efficient measures are needed both at international and national levels

    Theoretical study of Oldroyd-b visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing

    Get PDF
    The characteristics of the flow field of both viscous and viscoelastic fluids passing through a curved pipe with a Navier slip boundary condition have been investigated analytically in the present study. The Oldroyd-B constitutive equation is employed to simulate realistic transport of dilute polymeric solutions in curved channels. In order to linearize the momentum and constitutive equations, a perturbation method is used in which the ratio of radius of cross section to the radius of channel curvature is employed as the perturbation parameter. The intensity of secondary and main flows is mainly affected by the hoop stress and it is demonstrated in the present study that both the Weissenberg number (the ratio of elastic force to viscous force) and slip coefficient play major roles in determining the strengths of both flows. It is also shown that as a result of an increment in slip coefficient, the position of maximum velocity markedly migrates away from the pipe center towards the outer side of curvature. Furthermore, results corresponding to Navier slip scenarios exhibit non-uniform distributions in both the main and lateral components of velocity near the wall which can notably vary from the inner side of curvature to the outer side. The present solution is also important in polymeric flow processing systems because of experimental evidence indicating that the no-slip condition can fail for these flows, which is of relevance to chemical engineers

    Present Status and Challenges Ahead for Engineering Education: Global and National Perspectives

    No full text

    THERMODYNAMICS OF HYDROGEN-BONDED POLYMER GEL-SOLVENT SYSTEMS

    No full text
    A statistical thermodynamic theory, which accounts for hydrogen-bonding interactions between polymeric gels and solvents, is developed The theory is shown to provide quantitative predictions of swelling behavior of poly(ethylene oxide) gels in chloroform and water and qualitative predictions of thermoreversible volume transitions of poly(N-isopropyl acrylamide) (PNIPA) gel in water. At the LCST of PNIPA gel, the theory predicts a sharp increase in the number of hydrogen-bonds formed between polymer molecules of the gel and a sharp decrease in the hydrogen-bonds formed between polymer molecules and water molecules. The predictions of this theory can have significant implications in designing smart gels based on hydrogen-bonding interactions. Such gels have applications in separations and in biomedical technology

    Predictions of bound water content in poly(N-isopropylacrylamide) gel

    No full text
    This article does not have an abstract
    corecore