586 research outputs found

    Silicon optical modulators

    Get PDF
    Optical technology is poised to revolutionise short reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such interconnect is the optical modulator. Modulators have been improved dramatically in recent years. Most notably the bandwidth has increased from the MHz to the multi GHz regime in little more than half a decade. However, the demands of optical interconnect are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimising metrics such as the energy per bit, and device footprint, whilst maximising bandwidth and modulation depth are non trivial demands. All of this must be achieved with acceptable thermal tolerance and optical spectral width, using CMOS compatible fabrication processes. Here we discuss the techniques that have, and will, be used to implement silicon optical modulators, as well as the outlook for these devices, and the candidate solutions of the future

    Silicon Photonics The Next Revolution in Telecom and Beyond

    Get PDF
    Esta conferencia versará sobre la fotónica del silicio, una tecnología de reciente aparición que permite construir dispositivos ópticos integrados utilizando las mismas técnicas de fabricación que las empleadas en la industria de semiconductores (tecnología CMOS). Por tanto, es una tecnología que abre la puerta al uso masivo de la tecnología óptica integrada en diversas aplicaciones, incluyendo: comunicaciones por fibra óptica, centros de datos, medicina, monitorización del medio ambiente... El Prof. Mashanovich aprovechará para mostrarnos los últimos avances que su grupo está realizando en este área, incluyendo la actividad sobre moduladores y detectores para la banda de comunicaciones ópticas, así como nuevas líneas de investigación en el infrarrojo medio. El Optoelectronic Research Centre de la Universidad de Southampton es uno de los centros líder en la docencia e investigación en fotónica. A lo largo de su historia han realizado numerosos descubrimientos e invenciones y cuentan también con una dilatada experiencia en la transferencia del conocimiento a la industria. Entre sus invenciones más conocidas está el Amplificador óptico de Fibra Dopada de Erbio (EDFA), componente muy usado en las redes de fibra óptica, sin el que no serían posibles las actuales autopistas de la información.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    A high efficiency input/output coupler for small silicon photonic devices

    Get PDF
    Coupling light from an optical fibre to small optical waveguides is particularly problematic in semiconductors, since the refractive index of the silica fibre is very different from that of a semiconductor waveguide. There have been several published methods of achieving such coupling, but none are sufficiently efficient whilst being robust enough for commercial applications. In this paper experimental results of our approach called a Dual-Grating Assisted Directional Coupler, are presented. The principle of coupling by this novel method has been successfully demonstrated, and a coupling efficiency of 55% measured

    Optical detection and modulation at 2µm-2.5µm in silicon

    No full text
    Recently the 2µm wavelength region has emerged as an exciting prospect for the next generation of telecommunications. In this paper we experimentally characterise silicon based plasma dispersion effect optical modulation and defect based photodetection in the 2-2.5µm wavelength range. It is shown that the effectiveness of the plasma dispersion effect is dramatically increased in this wavelength window as compared to the traditional telecommunications wavelengths of 1.3µm and 1.55µm. Experimental results from the defect based photodetectors show that detection is achieved in the 2-2.5µm wavelength range, however the responsivity is reduced as the wavelength is increased away from 1.55µm

    CMOS compatible integrated optical isolator

    Get PDF
    Herein we present our efforts to realise a novel integrated optical isolator. Utilising the principles of total internal reflection, the isolator is CMOS compatible and can be realised in a variety of materials

    Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8µm

    No full text
    The design and characterization of silicon-on-insulator mid- infrared spectrometers operating at 3.8µm is reported. The devices are fabricated on 200mm SOI wafers in a CMOS pilot line. Both arrayed waveguide grating structures and planar concave grating structures were designed and tested. Low insertion loss (1.5-2.5dB) and good crosstalk characteristics (15-20dB) are demonstrated, together with waveguide propagation losses in the range of 3 to 6dB/cm

    Locally erasable couplers for optical device testing in silicon on insulator

    No full text
    Wafer scale testing is critical to reducing production costs and increasing production yield. Here we report a method that allows testing of individual optical components within a complex optical integrated circuit. The method is based on diffractive grating couplers, fabricated using lattice damage induced by ion implantation of germanium. These gratings can be erased via localised laser annealing, which is shown to reduce the outcoupling efficiency by over 20 dB after the device testing is completed. Laser annealing was achieved by employing a CW laser, operating at visible wavelengths thus reducing equipment costs and allowing annealing through thick oxide claddings. The process used also retains CMOS compatibility

    Coarse wavelength division (de)multiplexer using an interleaved angled multimode interferometer structure

    No full text
    We have demonstrated a coarse wavelength (de)multiplexing structure on the silicon-on-insulator platform. It comprises two 4-channel angled multimode interferometers interleaved with an imbalanced Mach-Zehnder interferometer (MZI) leading to an 8-channel multiplexing device. The device requires only single lithography and etching steps for fabrication and has a good tolerance to fabrication errors in terms of waveguide width. The insertion loss and crosstalk achieved are 3-4 dB and -(15-20) dB, respectively. Potential is shown for achieving improved performance using larger waveguide bending radii in the MZI arms and/or (a) local heater(s) for refractive index tuning

    Rib waveguides for mid-infrared silicon photonics

    Get PDF
    Design rules for both single-mode and polarization-independent strained silicon-on-insulator rib waveguides at the wavelength of 3.39 mu m are presented for the first time to our knowledge. Waveguide geometries with different parameters, such as waveguide height, rib width, etch depth, top oxide cover thickness and sidewall angle, have been studied in order to investigate and define design rules that will make devices suitable for mid-IR applications. Chebyshev bivariate interpolation with a standard deviation of less than 1% has been used to represent the zero-birefringence surface. Experimental results for the upper cladding stress level have been used to determine the influence of top oxide cover thickness and different levels of upper cladding stress on waveguide characteristics. Finally, the polarization-insensitive and single-mode locus is presented for different waveguide heights. (C) 2009 Optical Society of Americ
    corecore