81 research outputs found

    Laser activated MTOS microwave device

    Get PDF
    A light-activated semiconductor device usable as an optoelectronic switch, pulse generator or optical detector is provided. A semiconductor device is disclosed which provides back-to-back metal-thin oxide-silicon (MTOS) capacitors. Each capacitor includes a thin, light-absorptive aluminum electrode which overlies a thin oxide layer and a lightly doped region implanted in an intrinsic silicon substrate

    Laser scanned image sensors using photoconductors with deep traps

    Get PDF
    Photoconductor records image when holes and electrons are trapped inside it due to incident photons. Image can be read out by exposing photoconductor to scanning laser beam. Photons from scanning laser empty traps, generating photocurrent. Image information is obtained by detecting this photocurrent synchronously with laser scan

    Deep trap, laser activated image converting system

    Get PDF
    Receiving an optical image on the surface of a photoconducting semiconductor is presented, storing the image in deep traps of the semiconductor, and later scanning the semiconductor with a laser beam to empty the deep traps, thereby producing a video signal. The semiconductor is illuminated with photons of energy greater than the band gap producing electron-hole pairs in the semiconductor which subsequently fill traps in energy from the band edges. When the laser beam of low energy photons excites the trapped electrons and holes out of the traps into the conduction and valence bands, a photoconductivity can be observed

    Thin film thermal detector

    Get PDF
    Abnormally large variation of capacitance with temperature is obtained in thin film capacitors when a fixed ionic space charge is present in sufficient density in a dielectric film. This effect is the basis for a new kind of thin film thermal detector, whose performance at room temperature equals or exceeds that of comparable devices at much lower temperatures

    Method and apparatus for measurement of trap density and energy distribution in dielectric films

    Get PDF
    Trap densities in dielectric films are determined by tunnel injection measurements when the film is incorporated in an insulated-gate field effect transistor. Under applied bias to the transistor gate, carriers (electrons or holes) tunnel into traps in the dielectric film. The resulting space charge tends to change channel conductance. By feeding back a signal from the source contact to the gate electrode, channel conductance is held constant, and by recording the gate voltage as a function of time, trap density can be determined as a function of distance from the dielectric-semiconductor interface. The process is repeated with the gate bias voltage at different levels in order to determine the energy distribution of traps as a function of distance from the interface

    Millimeter-wave monolithic diode-grid frequency multiplier

    Get PDF
    A semiconductor diode structure useful for harmonic generation of millimeter or submillimeter wave radiation from a fundamental input wave is fabricated on a GaAs substrate. A heavily doped layer of n(sup ++) GaAs is produced on the substrate and then a layer of intrinsic GaAs on said heavily doped layer on top of which a sheet of heavy doping (++) is produced. A thin layer of intrinsic GaAs grown over the sheet is capped with two metal contacts separated by a gap to produce two diodes connected back to back through the n(sup ++) layer for multiplication of frequency by an odd multiple. If only one metal contact caps the thin layer of intrinsic GaAs, the second diode contact is produced to connect to the n(sup ++) layer for multiplication of frequency by an even number. The odd or even frequency multiple is selected by a filter. A phased array of diodes in a grid will increase the power of the higher frequency generated

    Alternating gradient photodetector

    Get PDF
    A far infrared (FIR) range responsive photodetector is disclosed. There is a substrate of degenerate germanium. A plurality of alternating impurity-band and high resistivity layers of germanium are disposed on the substrate. The impurity-band layers have a doping concentration therein sufficiently high to include donor bands which can release electrons upon impingement by FIR photons of energy hv greater than an energy gap epsilon. The high resistivity layers have a doping concentration therein sufficiently low as to not include conducting donor bands and are depleted of electrons. Metal contacts are provided for applying an electrical field across the substrate and the plurality of layers. In the preferred embodiment as shown, the substrate is degenerate n-type (N++) germanium; the impurity-band layers are n+ layers of germanium doped to approximately the low 10(exp 16)/cu cm range; and, the high resistivity layers are n-layers of germanium doped to a maximum of approximately 10(exp)/cu cm. Additionally, the impurity-band layers have a thickness less than a conduction-electron diffusion length in germanium and likely to be in the range of 0.1 to 1.0 micron, the plurality of impurity-bands is of a number such that the flux of FIR photons passing therethrough will be substantially totally absorbed therein, the thickness of the high resistivity layers is such compared to the voltage applied that the voltage drop in each the high resistivity layers controls the occurence of impact ionization in the impurity-band layers to a desired level

    Chemical vapor deposition reactor

    Get PDF
    An improved chemical vapor deposition reactor is characterized by a vapor deposition chamber configured to substantially eliminate non-uniformities in films deposited on substrates by control of gas flow and removing gas phase reaction materials from the chamber. Uniformity in the thickness of films is produced by having reactive gases injected through multiple jets which are placed at uniformally distributed locations. Gas phase reaction materials are removed through an exhaust chimney which is positioned above the centrally located, heated pad or platform on which substrates are placed. A baffle is situated above the heated platform below the mouth of the chimney to prevent downdraft dispersion and scattering of gas phase reactant materials

    Measurement of trap density in dielectric film

    Get PDF
    Method uses basic circuit to examine quality and trap density of film used in insulated gate field effect transistors. Data are measured as function of performance and life expectancy

    Thin-film ultraviolet detector and spectrometer

    Get PDF
    Typical metal-insulator-metal detector device is formed on quartz substrate. Base electrode is 3 to 6 nm aluminum layer, overcoated with 3 to 6 nm aluminum oxide or aluminum nitride, and capped with counter electrode of gold, lead, magnesium, or aluminum. Photoelectric yield data are given for Al-AlN-Au structure
    corecore