2,201 research outputs found

    Miniaturized multisensor system with a thermal gradient: Performance beyond the calibration range

    Get PDF
    Two microchips, each with four identical microstructured sensors using SnO2 nanowires as sensing material (one chip decorated with Ag nanoparticles, the other with Pt nanoparticles), were used as a nano-electronic nose to distinguish five different gases and estimate their concentrations. This innovative approach uses identical sensors working at different operating temperatures thanks to the thermal gradient created by an integrated microheater. A system with in-house developed hardware and software was used to collect signals from the eight sensors and combine them into eight-dimensional data vectors. These vectors were processed with a support vector machine allowing for qualitative and quantitative discrimination of all gases after calibration. The system worked perfectly within the calibrated range (100% correct classification, 6.9% average error on concentration value). This work focuses on minimizing the number of points needed for calibration while maintaining good sensor performance, both for classification and error in estimating concentration. Therefore, the calibration range (in terms of gas concentration) was gradually reduced and further tests were performed with concentrations outside these new reduced limits. Although with only a few training points, down to just two per gas, the system performed well with 96% correct classifications and 31.7% average error for the gases at concentrations up to 25 times higher than its calibration range. At very low concentrations, down to 20 times lower than the calibration range, the system worked less well, with 93% correct classifications and 38.6% average error, probably due to proximity to the limit of detection of the sensors

    Regenerative approaches for V/UHTS feeder links: system analysis and on-board complexity reduction

    Get PDF
    The dramatically increasing demand for high data rates necessitates the proper dimensioning of the feeder links of very or ultra high throughput satellite (V/UHTS) systems. However, because most of the current solutions rely on transparent payloads, the deployment of a very large number of spatially separated ground stations is necessary to support the total system bandwidth by enabling a full reuse of the scarce available uplink bandwidth. This approach has a significant impact on the complexity and the costs of the ground segment infrastructure. Regenerative payloads could be considered to avoid this design bottleneck. By allowing demodulation and decoding on-board the satellite, the favourable link budget conditions of feeder links compared to the user links can be exploited. Using a spectral efficient transmission technique, the number of ground stations required to support a target sum throughput can be notably reduced. Meanwhile, regenerative solutions have until now barely been used in V/UHTS payloads due to their high on-board power consumption. As a consequence, candidate solutions are proposed in this work to overcome this limitation. A non-coherent modulation technique, known as Differential Amplitude Phase Shift Keying (DAPSK), is introduced to avoid on-board carrier synchronization. Moreover, polar codes are considered to minimize the power consumption of the channel decoder. A preliminary analysis of the expected on-board power consumption compared to that of a standard DVB-S2 approach is conducted using available results in the open literature. Link performance is also evaluated via numerical simulations

    Mitochondria Are Related to Synaptic Pathology in Alzheimer's Disease

    Get PDF
    Morphological alterations of mitochondria may play an important role in the pathogenesis of Alzheimer's disease, been associated with oxidative stress and Aβ-peptide-induced toxicity. We proceeded to estimation of mitochondria on electron micrographs of autopsy specimens of Alzheimer's disease. We found substantial morphological and morphometric changes of the mitochondria in the neurons of the hippocampus, the neocortex, the cerebellar cortex, the thalamus, the globus pallidus, the red nucleus, the locus coeruleus, and the climbing fibers. The alterations consisted of considerable changes of the cristae, accumulation of osmiophilic material, and modification of the shape and size. Mitochondrial alterations were prominent in neurons, which showed a depletion of dendritic spines and loss of dendritic branches. Mitochondrial alterations are not related with the accumulation of amyloid deposits, but are prominent whenever fragmentation of the Golgi apparatus exists. Morphometric analysis showed also that mitochondria are significantly reduced in neurons, which demonstrated synaptic pathology

    Dilepton production by bremsstrahlung of meson fields in nuclear collisions

    Get PDF
    We study the bremsstrahlung of virtual omega mesons due to the collective deceleration of nuclei at the initial stage of an ultrarelativistic heavy-ion collision. It is shown that electromagnetic decays of these mesons may give an important contribution to the observed yields of dileptons. Mass spectra of positron-electron and muon pairs produced in central Au+Au collisions are calculated under some simplifying assumptions on the space-time variation of the baryonic current in a nuclear collision process. Comparison with the CERES data for 160 AGev Pb+Au collisions shows that the proposed mechanism gives a noticeable fraction of the observed lepton pairs in the intermediate region of invariant masses. Sensitivity of the dilepton yield to the in-medium modification of masses and widths of vector mesons is demonstrated.Comment: 14 page

    Quark Dispersion Relation and Dilepton Production in the Quark-Gluon Plasma

    Get PDF
    Under very general assumptions we show that the quark dispersion relation in the quark-gluon plasma is given by two collective branches, of which one has a minimum at a non-vanishing momentum. This general feature of the quark dispersion relation leads to structures (van Hove singularities, gaps) in the low mass dilepton production rate, which might provide a unique signature for the quark-gluon plasma formation in relativistic heavy ion collisions.Comment: 6 pages, Revtex, 2 PostScript figures, revised version to be published in Phys. Rev. Let

    s-Process Nucleosynthesis in Carbon Stars

    Get PDF
    We present the first detailed and homogeneous analysis of the s-element content in Galactic carbon stars of N-type. Abundances of Sr,Y, Zr (low-mass s-elements, or ls) and of Ba, La, Nd, Sm and Ce (high-mass s-elements, hs) are derived using the spectral synthesis technique from high-resolution spectra. The N-stars analyzed are of nearly solar metallicity and show moderate s-element enhancements, similar to those found in S stars, but smaller than those found in the only previous similar study (Utsumi 1985), and also smaller than those found in supergiant post-AGB stars. This is in agreement with the present understanding of the envelope s-element enrichment in giant stars, which is increasing along the spectral sequence M-->MS-->S-->SC-->C during the AGB phase. We compare the observational data with recent ss-process nucleosynthesis models for different metallicities and stellar masses. Good agreement is obtained between low mass AGB star models (M < 3 M_o) and s-elements observations. In low mass AGB stars, the 13C(alpha, n)16O reaction is the main source of neutrons for the s-process; a moderate spread, however, must exist in the abundance of 13C that is burnt in different stars. By combining information deriving from the detection of Tc, the infrared colours and the theoretical relations between stellar mass, metallicity and the final C/O ratio, we conclude that most (or maybe all) of the N-stars studied in this work are intrinsic, thermally-pulsing AGB stars; their abundances are the consequence of the operation of third dredge-up and are not to be ascribed to mass transfer in binary systems.Comment: 31 pages, 10 figures, 6 tables. Accepted in Ap

    Environmental Factors in Northern Italy and Sickle Cell Disease Acute Complications: A Multicentric Study

    Get PDF
    Background: Environmental factors seem to influence clinical manifestations of sickle cell disease (SCD), but few studies have shown consistent findings. We conducted a retrospective multicentric observational study to investigate the influence of environmental parameters on hospitalization for vaso-occlusive crises (VOC) or acute chest syndrome (ACS) in children with SCD. Methods: Hospital admissions were correlated with daily meteorological and air-quality data obtained from Environmental Regional Agencies in the period 2011–2015. The effect of different parameters was assessed on the day preceding the crisis up to ten days before. Statistical analysis was performed using a quasi-likelihood Poisson regression in a generalized linear model. Results: The risk of hospitalization was increased for low maximum temperature, low minimum relative humidity, and low atmospheric pressure and weakly for mean wind speed. The diurnal temperature range and temperature difference between two consecutive days were determined to be important causes of hospitalization. For air quality parameters, we found a correlation only for high levels of ozone and for low values at the tail corresponding to the lowest concentration of this pollutant. Conclusions: Temperature, atmospheric pressure, humidity and ozone levels influence acute complications of SCD. Patients’ education and the knowledge of the modes of actions of these factors could reduce hospitalizations

    ρ\rho - nucleus bound states in Walecka model

    Full text link
    Possible formation of ρ\rho nucleus bound state is studied in the framework of Walecka model. The bound states are found in different nuclei ranging from 3He^3He to 208Pb^{208}Pb. These bound states may have a direct bearing on the recent experiments on the photoproduction of ρ\rho meson in the nuclear medium.Comment: RevTeX fil

    Photoproduction of mesons in nuclei at GeV energies

    Full text link
    In a transport model that combines initial state interactions of the photon with final state interactions of the produced particles we present a calculation of inclusive photoproduction of mesons in nuclei in the energy range from 1 to 7 GeV. We give predictions for the photoproduction cross sections of pions, etas, kaons, antikaons, and π+π\pi^+\pi^- invariant mass spectra in ^{12}C and ^{208}Pb. The effects of nuclear shadowing and final state interaction of the produced particles are discussed in detail.Comment: Text added in summary in general reliability of the method, references updated. Phys. Rev. C (2000) in pres
    corecore