381 research outputs found

    Facile and rapid synthesis of highly luminescent nanoparticles via Pulsed Laser Ablation in Liquid

    Full text link
    This paper demonstrates the usefulness of pulsed laser ablation in liquids as a fast screening synthesis method able to prepare even complex compositions at the nanoscale. Nanoparticles of Y2O3:Eu3+, Lu2O2S: Eu3+, Gd2SiO5:Ce3+ and Lu3TaO7:Gd3+,Tb3+ are successfully synthesized by pulsed laser ablation in liquids. The phase and stoichiometries of the original materials are preserved while the sizes are reduced down to 5-10 nm. The optical properties of the materials are also preserved but show some small variations and some additional structures which are attributed to the specificities of the nanoscale (internal pressure, inhomogeneous broadening, surface states...

    Shells of crystal field symmetries evidenced in oxide nano-crystals

    Full text link
    By the use of a point charge model based on the Judd-Ofelt transition theory, the luminescence from Eu3+ ions embedded in Gd2O3 clusters is calculated and compared to the experimental data. The main result of the numerical study is that without invoking any other mechanisms such as crystal disorder, the pure geometrical argument of the symmetry breaking induced by the particle surface has influence on the energy level splitting. The modifications are also predicted to be observable in realistic conditions where unavoidable size dispersion has to be taken into account. The emission spectrum results from the contribution of three distinct regions, a cluster core, a cluster shell and a very surface, the latter being almost completely quenched in realistic conditions. Eventually, by detailing the spectra of the ions embedded at different positions in the cluster we get an estimate of about 0.5 nm for the extent of the crystal field induced Stark effect. Due to the similarity between Y2O3 and Gd2O3, these results apply also to Eu3+ doped Y2O3 nanoparticles

    Oriented Attachment of ZnO Nanocrystals

    Full text link
    Self-organization of nanoparticles is a major issue to synthesize mesoscopic structures. Among the possible mechanisms leading to self-organization, the oriented attachment is efficient yet not completely understood. We investigate here the oriented attachment process of ZnO nanocrystals preformed in the gas phase. During the deposition in high vacuum, about 60% of the particles, which are uncapped, form larger crystals through oriented attachment. In the present conditions of deposition, no selective direction for the oriented attachment is noticed. To probe the driving force of the oriented attachment, and more specifically the possible influence of the dipolar interaction between particles, we have deposited the same nanocrystals in the presence of a constant electric field. The expected effect was to enhance the fraction of domains resulting from the oriented attachment due to the increased interaction of the particle dipoles with the electric field. The multiscale analytical and statistical analysis (TEM coupled to XRD) shows no significant influence of the electric field on the organization of the particles. We therefore conclude that the dipolar interaction between nanocrystals is not the prominent driving force in the process. Consequently, we argue, in accordance with recent theoretical and experimental investigations, that the surface reduction, possibly driven by Coulombic interaction, may be the major mechanism for the oriented attachment process

    Guest displacement in silicon clathrates

    Get PDF
    We study both theoretically and experimentally the structure of the doped silicon clathrate II NaxSi34. We find that contrary to published works, the sodium atoms do not retain the T-d symmetry inside the Si-28 cages and move about 1 A away from the center of the cage. This displacement, in conjunction with that of a sodium atom in an adjacent Si-28 cage, leads to a "dimerization" of sodium atoms. As a consequence, Rietveld refinements of x-ray diffraction spectra and transport, vibrational, and electronic properties must be revisited

    Superconductivity in doped sp3 semiconductors: The case of the clathrates

    Get PDF
    We present a joint experimental and theoretical study of the superconductivity in doped silicon clathrates. The critical temperature in Ba-8@Si-46 is shown to strongly decrease with applied pressure. These results are corroborated by ab initio calculations using MacMillan's formulation of the BCS theory with the electron-phonon coupling constant lambda calculated from perturbative density functional theory. Further, the study of I-8@Si-46 and of gedanken pure silicon diamond and clathrate phases doped within a rigid-band approach show that the superconductivity is an intrinsic property of the sp(3) silicon network. As a consequence, carbon clathrates are predicted to yield large critical temperatures with an effective electron-phonon interaction much larger than in C-60

    Dielectric properties of segmented polyurethanes for electromechanical applications

    Get PDF
    cited By 10International audienceThe paper deals with electromechanical and dielectric properties of polyurethanes (PU) block-copolymers. Most of the works published in the literature only consider electrostriction at room temperature at a given frequency. In this work, it is shown that electrostrictive coefficient ME is divided by 3-10 at increasing frequency over 3 decades of frequency, depending on the ratio of hard to soft segments in PU. Thus it is important to analyze the energy conversion efficiency by investigating the dielectric and viscoelastic properties. This work deals with the study of dielectric properties of 3 PU with different fractions of hard segments. Three relaxation phenomena (β, α and conduction) were investigated for each PU in the temperature-frequency range studied here, in order to optimize the copolymer composition in view of their best efficiency as actuators or mechanical energy harvesting devices

    Deformation mechanism of cerium oxide nanocubes - an in situ transmission electron microscopy study

    Get PDF
    Cerium oxide nanoparticles are used in many industrial products, among which solid oxide fuel cell electrodes or catalysts. However, their mechanical properties are rarely taken into account and few studies dealt with the determination of their deformation mechanism [1, 2]. Please click Download on the upper right corner to see the full abstract

    Sondes actives en champ proche pour la plasmonique et la plasmonique quantique

    Get PDF
    Les plasmons de surface (SP) sont des modes du champ électromagnétique confinés à l'interface entre un métal et un diélectrique. De par leur nature hybride, les SP permettent de concentrer et manipuler la lumière à des échelles sub-longueur d'onde. Ces propriétés sans précédent suscitent un grand intérêt, en particulier pour le transport et le traitement de l'information quantique mais aussi pour le contrôle de l'émission spontanée d'émetteurs fluorescents. Les études présentées dans ce manuscrit s'intéressent au couplage de nanostructures plasmoniques avec des nanoparticules luminescentes. L'outil utilisé est un microscope optique en champ proche (SNOM) dans lequel la nano-source de lumière est un nano-objet fluorescent attaché en bout de pointe (sonde active). Cette technique permet à la fois d'augmenter la résolution théorique accessible en SNOM mais aussi de positionner la sonde avec une précision nanométrique et de l'exciter directement grâce à la lumière laser injectée dans la fibre optique. En utilisant uniquement la lumière émise par l'objet, ces pointes ouvrent la voie à des études originales en nano-optique et en plasmonique. Dans ce travail de thèse, deux aspects distincts ont été abordés. D'une part, nous avons étudié les propriétés des plasmons de surface dans le régime de la plasmonique quantique en utilisant pour cela une sonde active fabriquée à base d'un émetteur de photons uniques, le centre NV (nitrogen-vacancy) contenu dans les nano-diamants. Les résultats fondamentaux obtenus sur ce système permettent d'envisager de nombreuses expériences en plasmonique quantique. D'autre part, le travail de développement des sondes actives à base de nanocristaux de YAG (yttrium-aluminum garnet) dopés au cérium a été poursuivi. Ces sondes nous ont permis de démarrer de nouvelles études sur les résonances plasmoniques localisées de particules colloïdales en or.Surface plasmons (SPs) are modes of the electromagnetic field confined at the interface between a metal and a dielectric. Due to their hybrid nature, the SPs can be used to concentrate and handle light on subwavelength scales. These unprecedented properties draw great interest, in particular for quantum information transport and processing and also for the control of spontaneous emission of fluorescent emitters. The studies presented in this manuscript report the coupling of plasmonic nanostructures with luminescent nanoparticles. The tool we use is a scanning near-field optical microscope (SNOM), in which the nano-source of light is a fluorescent nano-object attached at the end of the probe (active tip). This technique allows not only to reach a better optical resolution in SNOM but also to position the nano-emitter with a nanometre precision and to excite it directly thanks to the laser light injected into the optical fibre. By using only the light emitted by the object, these tips open the way to original studies in nano-optics and plasmonics. In this work, two distinct aspects were studied. First, we studied the properties of the SPs in the quantum plasmonics regime. For this purpose, we used an active tip based on single photons emitters which are the NV centres (nitrogen-vacancy centre) hosted in nanodiamonds. The fundamental results obtained on this system make it possible to consider many other quantum plasmonics experiments. In addition, a different type of active tips based on Cerium-doped YAG (yttrium-aluminum garnet) nanoparticules was developed. These probes allow us to start new studies on localised plasmonic resonances in colloidal gold particles.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    In situ nanocompression tests in an environmental TEM to study plasticity of cerium oxides

    Get PDF
    Cerium oxide plays an important role in several fields, among which catalysis, gas detection or fuel cells [1]. Cerium oxide nanoparticles are also used as superior abrasive particles in chemical mechanical planarization (CMP), which is a key process in semiconductor device fabrication [2]. Most of the current research focus on the synthesis of cerium oxide to optimize CMP, but analysing its deformation mechanisms is also a promising research direction [3]. Please click Additional Files below to see the full abstract

    TEM observation and in situ compression tests of transition alumina prepared by high pressure compaction at room temperature

    Get PDF
    The behavior of ceramics at the nanometer scale strongly differs from the one of the corresponding bulk material. For instance, strong plastic deformation has recently been reported in isolated nanometer-sized alumina nanoparticles or MgO nanocubes, when tested in situ in a transmission electron microscope (TEM). This plastic behavior may also occur in a powder during the compaction process, even at room temperature. Controlling plastic deformation of nanoparticles during the ceramics processing might be a way to enhance their properties or to improve the processing route (compaction and sintering steps, for instance). We present here a comprehensive study of the mechanical behavior of transition alumina in the compacted powder. Please click Additional Files below to see the full abstract
    • …
    corecore