1,088 research outputs found

    Faster subsequence recognition in compressed strings

    Full text link
    Computation on compressed strings is one of the key approaches to processing massive data sets. We consider local subsequence recognition problems on strings compressed by straight-line programs (SLP), which is closely related to Lempel--Ziv compression. For an SLP-compressed text of length mˉ\bar m, and an uncompressed pattern of length nn, C{\'e}gielski et al. gave an algorithm for local subsequence recognition running in time O(mˉn2logn)O(\bar mn^2 \log n). We improve the running time to O(mˉn1.5)O(\bar mn^{1.5}). Our algorithm can also be used to compute the longest common subsequence between a compressed text and an uncompressed pattern in time O(mˉn1.5)O(\bar mn^{1.5}); the same problem with a compressed pattern is known to be NP-hard

    Carbon Consequences of Forest Disturbance and Recovery Across the Conterminous United States

    Get PDF
    Forests of North America are thought to constitute a significant long term sink for atmospheric carbon. The United States Forest Service Forest Inventory and Analysis (FIA) program has developed a large data base of stock changes derived from consecutive estimates of growing stock volume in the US. These data reveal a large and relatively stable increase in forest carbon stocks over the last two decades or more. The mechanisms underlying this national increase in forest stocks may include recovery of forests from past disturbances, net increases in forest area, and growth enhancement driven by climate or fertilization by CO2 and Nitrogen. Here we estimate the forest recovery component of the observed stock changes using FIA data on the age structure of US forests and carbon stocks as a function of age. The latter are used to parameterize forest disturbance and recovery processes in a carbon cycle model. We then apply resulting disturbance/recovery dynamics to landscapes and regions based on the forest age distributions. The analysis centers on 28 representative climate settings spread about forested regions of the conterminous US. We estimate carbon fluxes for each region and propagate uncertainties in calibration data through to the predicted fluxes. The largest recovery-driven carbon sinks are found in the South central, Pacific Northwest, and Pacific Southwest regions, with spatially averaged net ecosystem productivity (NEP) of about 100 g C / square m / a driven by forest age structure. Carbon sinks from recovery in the Northeast and Northern Lake States remain moderate to large owing to the legacy of historical clearing and relatively low modern disturbance rates from harvest and fire. At the continental scale, we find a conterminous U.S. forest NEP of only 0.16 Pg C/a from age structure in 2005, or only 0.047 Pg C/a of forest stock change after accounting for fire emissions and harvest transfers. Recent estimates of NEP derived from inventory stock change, harvest, and fire data show twice the NEP sink we derive from forest age distributions. We discuss possible reasons for the discrepancies including modeling errors and the possibility of climate and/or fertilization (CO2 or N) growth enhancements

    Landsat Science: 40 Years of Innovation and Opportunity

    Get PDF
    Landsat satellites have provided unparalleled Earth-observing data for nearly 40 years, allowing scientists to describe, monitor and model the global environment during a period of time that has seen dramatic changes in population growth, land use, and climate. The success of the Landsat program can be attributed to well-designed instrument specifications, astute engineering, comprehensive global acquisition and calibration strategies, and innovative scientists who have developed analytical techniques and applications to address a wide range of needs at local to global scales (e.g., crop production, water resource management, human health and environmental quality, urbanization, deforestation and biodiversity). Early Landsat contributions included inventories of natural resources and land cover classification maps, which were initially prepared by a visual interpretation of Landsat imagery. Over time, advances in computer technology facilitated the development of sophisticated image processing algorithms and complex ecosystem modeling, enabling scientists to create accurate, reproducible, and more realistic simulations of biogeochemical processes (e.g., plant production and ecosystem dynamics). Today, the Landsat data archive is freely available for download through the USGS, creating new opportunities for scientists to generate global image datasets, develop new change detection algorithms, and provide products in support of operational programs such as Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (REDD). In particular, the use of dense (approximately annual) time series to characterize both rapid and progressive landscape change has yielded new insights into how the land environment is responding to anthropogenic and natural pressures. The launch of the Landsat Data Continuity Mission (LDCM) satellite in 2012 will continue to propel innovative Landsat science

    U.S. Government Open Internet Access to Sub-meter Satellite Data

    Get PDF
    The National Geospatial-Intelligence Agency (NGA) has contracted United States commercial remote sensing companies GeoEye and Digital Globe to provide very high resolution commercial quality satellite imagery to federal/state government agencies and those projects/people who support government interests. Under NextView contract terms, those engaged in official government programs/projects can gain online access to NGA's vast global archive. Additionally, data from vendor's archives of IKONOS-2 (IK-2), OrbView-3 (OB-3), GeoEye-1 (GE-1), QuickBird-1 (QB-1), WorldView-1 (WV-1), and WorldView-2 (WV-2), sensors can also be requested under these agreements. We report here the current extent of this archive, how to gain access, and the applications of these data by Earth science investigators to improve discoverability and community use of these data. Satellite commercial quality imagery (CQI) at very high resolution (< 1 m) (here after referred to as CQI) over the past decade has become an important data source to U.S. federal, state, and local governments for many different purposes. The rapid growth of free global CQI data has been slow to disseminate to NASA Earth Science community and programs such as the Land-Cover Land-Use Change (LCLUC) program which sees potential benefit from unprecedented access. This article evolved from a workshop held on February 23rd, 2012 between representatives from NGA, NASA, and NASA LCLUC Scientists discussion on how to extend this resource to a broader license approved community. Many investigators are unaware of NGA's archive availability or find it difficult to access CQI data from NGA. Results of studies, both quality and breadth, could be improved with CQI data by combining them with other moderate to coarse resolution passive optical Earth observation remote sensing satellites, or with RADAR or LiDAR instruments to better understand Earth system dynamics at the scale of human activities. We provide the evolution of this effort, a guide for qualified user access, and describe current to potential use of these data in earth science

    High-Resolution Satellite Data Open for Government Research

    Get PDF
    U.S. satellite commercial imagery (CI) with resolution less than 1 meter is a common geospatial reference used by the public through Web applications, mobile devices, and the news media. However, CI use in the scientific community has not kept pace, even though those who are performing U.S. government research have access to these data at no cost.Previously, studies using multiple CI acquisitions from IKONOS-2, Quickbird-2, GeoEye-1, WorldView-1, and WorldView-2 would have been cost prohibitive. Now, with near-global submeter coverage and online distribution, opportunities abound for future scientific studies. This archive is already quite extensive (examples are shown in Figure 1) and is being used in many novel applications

    Impacts of disturbance history on forest carbon stocks and fluxes: Merging satellite disturbance mapping with forest inventory data in a carbon cycle model framework

    Get PDF
    Forest carbon stocks and fluxes are highly dynamic following stand-clearing disturbances from severe fire and harvest and this presents a significant challenge for continental carbon budget assessments. In this work we use forest inventory data to parameterize a carbon cycle model to represent post-disturbance carbon trajectories of carbon pools and fluxes for specific forest types growing in high and low site productivity class settings. We then apply these trajectories to landscapes and regions based on forest age distributions derived from either the FIA data or from Landsat time series stacks (1985–2006) for 54 representative scenes throughout most of the conterminous United States.Weestimate the net carbon uptake in forests caused by post-disturbance growth and decomposition (“regrowth sink”) for forested regions across the country. At the landscape scale, the prevailing condition of positive net ecosystem productivity (NEP) is in stark contrast to local patcheswith large sources, particularly in the west where fires and clear cuts create contiguous disturbed patches. At the continental scale, regional differences in disturbance rates reflect management patterns of high disturbance rates in the Southeastern and South Central states, and lower disturbance rates in the Northeast andNorthern Lakes States. Despite low contemporary disturbance rates in the Northeast and Northern Lakes States (0.61 and 0.74% y−1), the regrowth sink there remains of moderate to large strength (88 and 57 g C m−2 y−1) owing to the continued legacy from historical clearing. Large regrowth sinks are also found in the Southeast, South Central, and Pacific Southwest regions (85, 86, and 95 g C m−2 y−1) where disturbance rates also tend to be higher (1.59, 1.38, and 0.93% y−1). Overall, the Landsat-derived disturbance rates are elevated relative to FIA-derived rates (1.19 versus 0.93% y−1) particularly for western regions. The differences only modestly adjust regional- and continental-scale carbon budgets, reducing NEP from forest regrowth by about 8%

    Large Area Scene Selection Interface (LASSI). Methodology of Selecting Landsat Imagery for the Global Land Survey 2005

    Get PDF
    The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004-2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological Survey (USGS) sponsored the development of an automated scene selection tool, the Large Area Scene Selection Interface (LASSI), to aid in the selection of imagery for this data set. This innovative approach to scene selection applied a user-defined weighting system to various scene parameters: image cloud cover, image vegetation greenness, choice of sensor, and the ability of the Landsat 7 Scan Line Corrector (SLC)-off pair to completely fill image gaps, among others. The parameters considered in scene selection were weighted according to their relative importance to the data set, along with the algorithm's sensitivity to that weight. This paper describes the methodology and analysis that established the parameter weighting strategy, as well as the post-screening processes used in selecting the optimal data set for GLS2005

    How Many Bits? Radiometric Resolution as a Factor in Obtaining Forest Information with Remotely Sensed Measurements

    Get PDF
    This viewgraph presentation reviews the findings of a study that asks is 8 bits enough to obtain forest information via remote sensing with radiometric resolution. It was concluded that while there were differences in the varying resolution datasets, there was no clear evidence that increasing the quantization above 8 bits was a benefit for forestry monitoring
    corecore