11 research outputs found

    Ion desorption from molecules condensed at low temperature: A study with electron-ion coincidence spectroscopy combined with synchrotron radiation

    No full text
    This article reviews our recent work on photo-stimulated ion desorption (PSID) from molecules condensed at low temperature. We have used electron-ion coincidence (EICO) spectroscopy combined with synchrotron radiation. The history and present status of the EICO apparatus is described, as well as our recent investigations of condensed H₂O, NH₃, CH₃CN, and CF₃CH₃. Auger electron photoion coincidence (AEPICO) spectra of condensed H₂O at the O:1s ionization showed that H⁺ desorption was stimulated by O:KVV Auger processes leading to two - hole states (normal- Auger stimulated ion desorption (ASID) mechanism). The driving forces for H⁺ desorption were attributed to the electron missing in the O - H bonding orbitals and the effective hole-hole Coulomb repulsion. The normal ASID mechanism was also demonstrated for condensed NH₃. The H⁺ desorption at the 4a₁ ← O(N):1s resonance of both condensed H₂O and condensed NH₃ was found to be greatly enhanced. Based on the AEPICO spectra the following four-step mechanism was proposed: (1) the 4a₁ ← 1s transition, (2) extension of the HO - H (H₂N - H) distance within the lifetime of the (1s)⁻¹(4a1)¹ state, (3) spectator Auger transitions leading to (valence)⁻²(4a₁)¹ states, and (4) H⁺ desorption. The enhancement of the H⁺ desorption yield was attributed to the repulsive potential surface of the (1s) - 1(4a₁)¹ state. At the 3p ← O:1s resonance of condensed H₂O, on the other hand, the H⁺ yield was found to be decreased. The AEPICO spectra showed that the H⁺ desorption was stimulated by spectator Auger transitions leading to (valence)⁻²(3p)¹ states. The decrease in the H⁺ yield was attributed to a reduction in the effective hole-hole Coulomb repulsion due to shielding by the 3p electron. Photoelectron photoion coincidence (PEPICO) spectra of condensed H₂O showed that the core level of the surface H₂O responsible for the H⁺ desorption was shifted by 0.7 eV from that of the bulk H₂O. The H⁺ desorption from condensed CH₃CN was also investigated. In a study of condensed CF₃CH₃ using PEPICO spectroscopy, site-specific ion desorption was directly verified; that is, H⁺ and CH₃⁺ desorption was predominant for the C:1s photoionization at the -CH₃ site, while C₂Hn⁺, CFCHm⁺, and CF₃⁺ desorption was predominantly induced by the C:1s photoionization at the -CF₃ site. These investigations demonstrate that EICO spectroscopy combined with synchrotron radiation is a powerful tool for studying PSID of molecules condensed at low temperature

    JASMINE: Near-infrared astrometry and time-series photometry science

    Get PDF
    The Japan Astrometry Satellite Mission for INfrared Exploration (JASMINE) is a planned M-class science space mission by the Institute of Space and Astronautical Science, the Japan Aerospace Exploration Agency. JASMINE has two main science goals. One is Galactic archaeology with a Galactic Center survey, which aims to reveal the Milky Way’s central core structure and formation history from Gaia-level (∼25 μ{\mu} as) astrometry in the near-infrared (NIR) Hw band (1.0–1.6 μ{\mu} m). The other is an exoplanet survey, which aims to discover transiting Earth-like exoplanets in the habitable zone from NIR time-series photometry of M dwarfs when the Galactic Center is not accessible. We introduce the mission, review many science objectives, and present the instrument concept. JASMINE will be the first dedicated NIR astrometry space mission and provide precise astrometric information on the stars in the Galactic Center, taking advantage of the significantly lower extinction in the NIR. The precise astrometry is obtained by taking many short-exposure images. Hence, the JASMINE Galactic Center survey data will be valuable for studies of exoplanet transits, asteroseismology, variable stars, and microlensing studies, including discovery of (intermediate-mass) black holes. We highlight a swath of such potential science, and also describe synergies with other missions

    Overview of the inter-orbit and orbit-to-ground laser communication demonstration by OICETS

    No full text
    The experiment results on the inter-orbit laser communications between OICETS and a geostationary satellite and the results of two kinds of orbit-to-ground laser communications between OICETS and ground stations are summarized. The geostationary satellite for the inter-orbit demonstrations is the European Space Agency's geostationary satellite, ARTEMIS, and the ground stations for the orbit-to-ground demonstrations are of the National Institute of Information, and Communications Technology (NICT) in Japan and the German Aerospace Center (DLR), respectively. The descriptions of those experiments contain some statistically analyzed results as well as data samples measured during the demonstrations. The authors present the overview of these demonstration progresses and discuss on the results
    corecore