294 research outputs found

    Investigating the biochemical signatures and physiological roles of the FMO family using molecular phylogeny

    Get PDF
    Group B flavin-dependent monooxygenases are employed in swathes of different physiological functions. Despite their collectively large substrate profile, they all harness a flavin-based C4a-(hydro)peroxy intermediate for function. Within this class are the flavin-containing monooxygenases (FMOs), representing an integral component within the secondary metabolism of all living things – xenobiotic detoxification. Their broad substrate profile makes them ideal candidates for detoxifying procedures as they can tackle a range of compounds. Recent studies have illustrated that several FMOs, however, have unique substrate profiles and differing physiological functions that implicate new roles within secondary and primary metabolism. Herein this article, by employing phylogenetic approaches, and inspecting structures of AlphaFold generated models, we have constructed a biochemical blueprint of the FMO family. FMOs are clustered in four distinct groups, with two being predominantly dedicated to xenobiotic detoxification. Furthermore, we observe that differing enzymatic activities are not constricted to a ‘golden’ set of residues but instead an intricate constellation of primary and secondary sphere residues. We believe that this work delineates the core phylogeny of the Group B monooxygenases and will prove useful for classifying newly sequenced genes and provide directions to future biochemical investigations.</p

    Investigating the biochemical signatures and physiological roles of the FMO family using molecular phylogeny

    Get PDF
    Group B flavin-dependent monooxygenases are employed in swathes of different physiological functions. Despite their collectively large substrate profile, they all harness a flavin-based C4a-(hydro)peroxy intermediate for function. Within this class are the flavin-containing monooxygenases (FMOs), representing an integral component within the secondary metabolism of all living things – xenobiotic detoxification. Their broad substrate profile makes them ideal candidates for detoxifying procedures as they can tackle a range of compounds. Recent studies have illustrated that several FMOs, however, have unique substrate profiles and differing physiological functions that implicate new roles within secondary and primary metabolism. Herein this article, by employing phylogenetic approaches, and inspecting structures of AlphaFold generated models, we have constructed a biochemical blueprint of the FMO family. FMOs are clustered in four distinct groups, with two being predominantly dedicated to xenobiotic detoxification. Furthermore, we observe that differing enzymatic activities are not constricted to a ‘golden’ set of residues but instead an intricate constellation of primary and secondary sphere residues. We believe that this work delineates the core phylogeny of the Group B monooxygenases and will prove useful for classifying newly sequenced genes and provide directions to future biochemical investigations.</p

    Investigating the biochemical signatures and physiological roles of the FMO family using molecular phylogeny

    Get PDF
    Group B flavin-dependent monooxygenases are employed in swathes of different physiological functions. Despite their collectively large substrate profile, they all harness a flavin-based C4a-(hydro)peroxy intermediate for function. Within this class are the flavin-containing monooxygenases (FMOs), representing an integral component within the secondary metabolism of all living things – xenobiotic detoxification. Their broad substrate profile makes them ideal candidates for detoxifying procedures as they can tackle a range of compounds. Recent studies have illustrated that several FMOs, however, have unique substrate profiles and differing physiological functions that implicate new roles within secondary and primary metabolism. Herein this article, by employing phylogenetic approaches, and inspecting structures of AlphaFold generated models, we have constructed a biochemical blueprint of the FMO family. FMOs are clustered in four distinct groups, with two being predominantly dedicated to xenobiotic detoxification. Furthermore, we observe that differing enzymatic activities are not constricted to a ‘golden’ set of residues but instead an intricate constellation of primary and secondary sphere residues. We believe that this work delineates the core phylogeny of the Group B monooxygenases and will prove useful for classifying newly sequenced genes and provide directions to future biochemical investigations.</p

    Investigating the biochemical signatures and physiological roles of the FMO family using molecular phylogeny

    Get PDF
    Group B flavin-dependent monooxygenases are employed in swathes of different physiological functions. Despite their collectively large substrate profile, they all harness a flavin-based C4a-(hydro)peroxy intermediate for function. Within this class are the flavin-containing monooxygenases (FMOs), representing an integral component within the secondary metabolism of all living things – xenobiotic detoxification. Their broad substrate profile makes them ideal candidates for detoxifying procedures as they can tackle a range of compounds. Recent studies have illustrated that several FMOs, however, have unique substrate profiles and differing physiological functions that implicate new roles within secondary and primary metabolism. Herein this article, by employing phylogenetic approaches, and inspecting structures of AlphaFold generated models, we have constructed a biochemical blueprint of the FMO family. FMOs are clustered in four distinct groups, with two being predominantly dedicated to xenobiotic detoxification. Furthermore, we observe that differing enzymatic activities are not constricted to a ‘golden’ set of residues but instead an intricate constellation of primary and secondary sphere residues. We believe that this work delineates the core phylogeny of the Group B monooxygenases and will prove useful for classifying newly sequenced genes and provide directions to future biochemical investigations.</p

    Juan José Saer – Ricardo Suspisiche: cruce de lenguajes para la creación de un espacio

    Get PDF
    Una experiencia vivida y comentada por el propio Suspisiche -pintor del litoral santafecino- y la frecuentación de los textos saerianos abren la posibilidad de este trabajo que pretende un acercamiento al cruce de lenguajes entre las obras de ambos. Cada uno desde su propia estética genera un espacio que trasciende la referencialidad para convertirse en una poética, pero también en una verdadera cosmovisión. Las obras de Saer van develando su concepción de la literatura y del mundo, concepción según la cual la realidad es huidiza, imposible de aprehender. Esta certeza conduce su proceso de escritura. aporta sus tópicos recurrentes que no son más que la insistencia desesperada por comunicar las propias percepciones. De la pintura de Suspisiche, dijo el crítico Taverna Irigoyen: &quot;es un paisaje que pareciera entregársele fácilmente, y cuando lo va a hacer suyo, a penetrarlo, se convierte en un espejismo inatrapable&quot;. ¿Cómo resuelven ambos. en la superficie textual. esa desconfianza en la posibilidad de instaurar sus universos? Por el camino del lenguaje, por la experimentación con que pueden transformar, superponer, reiterar, hasta crear un significado. Nuestro trabajo trata de demostrar cómo ambos evolucionan hacia la esencialidad que se logra por la progresiva supresión de lo accesorio, el abandono del pintoresquismo y una praxis que exige técnicas cada vez más rigurosas. Para el/o ese analiza el proceso de productividad de esos espacios que envuelven el trayecto vital del hombre y son uno con él, no por afinidades psicologistas. a la manera romántica, sino fatalmente, por impregnación. por simbiosis, por acoplamiento. No es el hombre el que se apropia del paisaje. es el espacio el que lo contiene. y permite al artista. desde adentro. una mirada que no es sólo recreación estética. sino ideología. en el sentido de visión del mundo.An experience lived and commented by the very Suspiche -a painter from the Santa Fe littoral- and a careful reading of texts by Saer, give origin to this paper, which aims at an understanding of cross languages between the works of both. Each one, from his own aesthetics, generates a space which transcends referentiality to become a poetics, but also a true cosmovision. Saer's works reveal his idea of literature and the world, a conception according to which liJe cannot be apprehended. This certainty guides his writing process; contributes his recurrent topics, which are nothing but the desperate insistence to communicate perceptions. About Suspiche's art, the critic Taverna Yrigoyen has said. /lit is a landscape which seems to submit to him easily, and when he is about to make it his. to penetrate it, it becomes an unreachable mirage. How do both solve. in the textual surface, that distrust in the possibility of setting up their universes? By way of language, through the experimentation with which they are able to transform, overlap, and reiterate, in order to create a meaning. Our paper aims at showing how both evolve towards the essentiality achieved through a progressive suppression ofwhat is unnecessary, the abandonment of devices typical of literature of manners. and a praxis which asksfor ever more rigorous techniques. To do so, we analize the process of productivity of those spaces which surround man's vital journey and are one with him; not due to psychological affinities. in the romantic way; but fatally, through impregnation, symbiosis, adjustment.Fil: Coutaz de Mascotti, Mirtha. Instituto Superior del Profesorado N°2 Dr. Joaquín V. González (Rafaela, Santa Fe, Argentina)Fil: Zobboli, Marta. Instituto Superior del Profesorado N°2 Dr. Joaquín V. González (Rafaela, Santa Fe, Argentina

    Investigating the biochemical signatures and physiological roles of the FMO family using molecular phylogeny

    Get PDF
    Group B flavin-dependent monooxygenases are employed in swathes of different physiological functions. Despite their collectively large substrate profile, they all harness a flavin-based C4a-(hydro)peroxy intermediate for function. Within this class are the flavin-containing monooxygenases (FMOs), representing an integral component within the secondary metabolism of all living things – xenobiotic detoxification. Their broad substrate profile makes them ideal candidates for detoxifying procedures as they can tackle a range of compounds. Recent studies have illustrated that several FMOs, however, have unique substrate profiles and differing physiological functions that implicate new roles within secondary and primary metabolism. Herein this article, by employing phylogenetic approaches, and inspecting structures of AlphaFold generated models, we have constructed a biochemical blueprint of the FMO family. FMOs are clustered in four distinct groups, with two being predominantly dedicated to xenobiotic detoxification. Furthermore, we observe that differing enzymatic activities are not constricted to a ‘golden’ set of residues but instead an intricate constellation of primary and secondary sphere residues. We believe that this work delineates the core phylogeny of the Group B monooxygenases and will prove useful for classifying newly sequenced genes and provide directions to future biochemical investigations.</p

    Investigating the biochemical signatures and physiological roles of the FMO family using molecular phylogeny

    Get PDF
    Group B flavin-dependent monooxygenases are employed in swathes of different physiological functions. Despite their collectively large substrate profile, they all harness a flavin-based C4a-(hydro)peroxy intermediate for function. Within this class are the flavin-containing monooxygenases (FMOs), representing an integral component within the secondary metabolism of all living things – xenobiotic detoxification. Their broad substrate profile makes them ideal candidates for detoxifying procedures as they can tackle a range of compounds. Recent studies have illustrated that several FMOs, however, have unique substrate profiles and differing physiological functions that implicate new roles within secondary and primary metabolism. Herein this article, by employing phylogenetic approaches, and inspecting structures of AlphaFold generated models, we have constructed a biochemical blueprint of the FMO family. FMOs are clustered in four distinct groups, with two being predominantly dedicated to xenobiotic detoxification. Furthermore, we observe that differing enzymatic activities are not constricted to a ‘golden’ set of residues but instead an intricate constellation of primary and secondary sphere residues. We believe that this work delineates the core phylogeny of the Group B monooxygenases and will prove useful for classifying newly sequenced genes and provide directions to future biochemical investigations.</p

    Whitefly genomes contain ribotoxin coding genes acquired from plants

    Get PDF
    Ribosome inactivating proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine residue in the conserved sarcin/ricin loop of 28S rRNA. These enzymes are widely distributed among plants and bacteria. Previously, we have described for the first time RIP genes in mosquitoes belonging to the Culicidae family. We showed that these genes are derived from a single event of horizontal gene transfer (HGT) from a prokaryotic donor. Mosquito RIP genes are evolving under purifying selection, strongly suggesting that these toxins have acquired a functional role. In this work, we show the existence of two RIP encoding genes in the genome of the whitefly Bemisia tabaci, a hemiptera species belonging to the Aleyrodidae family distantly related to mosquitoes. Contamination artifacts were ruled out analyzing three independent B. tabaci genome databases. In contrast to mosquito RIPs, whitefly genes harbor introns and according to transcriptomic evidence are transcribed and spliced. Phylogeny and the taxonomic distribution strongly support that whitefly RIP genes are derived from an independent HGT event from a plant source. These results, along with our previous description of RIPs in Diptera, suggest that the acquired genes are functional in these insects and confer some fitness advantage.Fil: Lapadula, Walter Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; ArgentinaFil: Mascotti, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; ArgentinaFil: Juri Ayub, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; Argentin

    On the diversity of F420 -dependent oxidoreductases:A sequence- and structure-based classification

    Get PDF
    The F(420) deazaflavin cofactor is an intriguing molecule as it structurally resembles the canonical flavin cofactor, although behaves as a nicotinamide cofactor due to its obligate hydride‐transfer reactivity and similar low redox potential. Since its discovery, numerous enzymes relying on it have been described. The known deazaflavoproteins are taxonomically restricted to Archaea and Bacteria. The biochemistry of the deazaflavoenzymes is diverse and they exhibit great structural variability. In this study a thorough sequence and structural homology evolutionary analysis was performed in order to generate an overarching classification of the F(420)‐dependent oxidoreductases. Five different deazaflavoenzyme Classes (I–V) are described according to their structural folds as follows: Class I encompassing the TIM‐barrel F(420)‐dependent enzymes; Class II including the Rossmann fold F(420)‐dependent enzymes; Class III comprising the β‐roll F(420)‐dependent enzymes; Class IV which exclusively gathers the SH3 barrel F(420)‐dependent enzymes and Class V including the three layer ββα sandwich F(420)‐dependent enzymes. This classification provides a framework for the identification and biochemical characterization of novel deazaflavoenzymes
    corecore