778 research outputs found

    The gene product Murr1 restricts HIV-1 replication in resting CD4(+) lymphocytes

    Full text link
    Although human immunodeficiency virus-1 (HIV-1) infects quiescent and proliferating CD4(+) lymphocytes, the virus replicates poorly in resting T cells(1-6). Factors that block viral replication in these cells might help to prolong the asymptomatic phase of HIV infection(7); however, the molecular mechanisms that control this process are not fully understood. Here we show that Murr1, a gene product known previously for its involvement in copper regulation(8,9), inhibits HIV-1 growth in unstimulated CD4(+) T cells. This inhibition was mediated in part through its ability to inhibit basal and cytokine-stimulated nuclear factor (NF)-kappaB activity. Knockdown of Murr1 increased NF-kappaB activity and decreased IkappaB-alpha concentrations by facilitating phospho-IkappaB-alpha degradation by the proteasome. Murr1 was detected in CD4(+) T cells, and RNA-mediated interference of Murr1 in primary resting CD4(+) lymphocytes increased HIV-1 replication. Through its effects on the proteasome, Murr1 acts as a genetic restriction factor that inhibits HIV-1 replication in lymphocytes, which could contribute to the regulation of asymptomatic HIV infection and the progression of AIDS.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62709/1/nature02171.pd

    Antibodies in HIV-1 Vaccine Development and Therapy

    Get PDF
    Despite 30 years of study, there is no HIV-1 vaccine and, until recently, there was little hope for a protective immunization. Renewed optimism in this area of research comes in part from the results of a recent vaccine trial and the use of single-cell antibody-cloning techniques that uncovered naturally arising, broad and potent HIV-1–neutralizing antibodies (bNAbs). These antibodies can protect against infection and suppress established HIV-1 infection in animal models. The finding that these antibodies develop in a fraction of infected individuals supports the idea that new approaches to vaccination might be developed by adapting the natural immune strategies or by structure-based immunogen design. Moreover, the success of passive immunotherapy in small-animal models suggests that bNAbs may become a valuable addition to the armamentarium of drugs that work against HIV-1

    Rapid Transient Production in Plants by Replicating and Non-Replicating Vectors Yields High Quality Functional Anti-HIV Antibody

    Get PDF
    Background: The capacity of plants and plant cells to produce large amounts of recombinant protein has been well established. Due to advantages in terms of speed and yield, attention has recently turned towards the use of transient expression systems, including viral vectors, to produce proteins of pharmaceutical interest in plants. However, the effects of such high level expression from viral vectors and concomitant effects on host cells may affect the quality of the recombinant product. Methodology/Principal Findings: To assess the quality of antibodies transiently expressed to high levels in plants, we have expressed and characterised the human anti-HIV monoclonal antibody, 2G12, using both replicating and non-replicating systems based on deleted versions of Cowpea mosaic virus (CPMV) RNA-2. The highest yield (approximately 100 mg/kg wet weight leaf tissue) of affinity purified 2G12 was obtained when the non-replicating CPMV-HT system was used and the antibody was retained in the endoplasmic reticulum (ER). Glycan analysis by mass-spectrometry showed that the glycosylation pattern was determined exclusively by whether the antibody was retained in the ER and did not depend on whether a replicating or non-replicating system was used. Characterisation of the binding and neutralisation properties of all the purified 2G12 variants from plants showed that these were generally similar to those of the Chinese hamster ovary (CHO) cell-produced 2G12. Conclusions: Overall, the results demonstrate that replicating and non-replicating CPMV-based vectors are able to direct the production of a recombinant IgG similar in activity to the CHO-produced control. Thus, a complex recombinant protein was produced with no apparent effect on its biochemical properties using either high-level expression or viral replication. The speed with which a recombinant pharmaceutical with excellent biochemical characteristics can be produced transiently in plants makes CPMV-based expression vectors an attractive option for biopharmaceutical development and production

    Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation

    Get PDF
    Activation of immune cells (but not B cells) with lectins is widely known. We used the structurally defined interaction between influenza hemagglutinin (HA) and its cell surface receptor sialic acid (SA) to identify a B cell receptor (BCR) activation modality that proceeded through non-cognate interactions with antigen. Using a new approach to reconstitute antigen-receptor interactions in a human reporter B cell line, we found that sequence-defined BCRs from the human germline repertoire could be triggered by both complementarity to influenza HA and a separate mode of signaling that relied on multivalent ligation of BCR sialyl-oligosaccharide. The latter suggested a new mechanism for priming naΓ―ve B cell responses and manifested as the induction of SA-dependent pan-activation by peripheral blood B cells. BCR crosslinking in the absence of complementarity is a superantigen effect induced by some microbial products to subvert production of antigen-specific immune responses. B cell superantigen activity through affinity for BCR carbohydrate is discussed
    • …
    corecore