6 research outputs found

    Recent Improvements in Geant4 Electromagnetic Physics Models and Interfaces

    Get PDF
    An overview of the electromagnetic (EM) physics of the Geant4 toolkit is presented. Two sets of EM models are available: the "Standard" initially focused on high energy physics (HEP) while the "Low-energy" was developed for medical, space and other applications. The "Standard" models provide a faster computation but are less accurate for keV energies, the "Low-energy" models are more CPU time consuming. A common interface to EM physics models has been developed allowing a natural combination of ultra-relativistic, relativistic and low-energy models for the same run providing both precision and CPU performance. Due to this migration additional capabilities become available. The new developments include relativistic models for bremsstrahlung and e+e- pair production, models of multiple and single scattering, hadron/ion ionization, microdosimetry for very low energies and also improvements in existing Geant4 models. In parallel, validation suites and benchmarks have been intensively developed

    Recent Improvements in Geant4 Electromagnetic Physics Models and Interfaces

    No full text
    An overview of the electromagnetic (EM) physics of the Geant4 toolkit is presented. Two sets of EM models are available: the "Standard" initially focused on high energy physics (HEP) while the "Low-energy" was developed for medical, space and other applications. The "Standard" models provide a faster computation but are less accurate for keV energies, the "Low-energy" models are more CPU time consuming. A common interface to EM physics models has been developed allowing a natural combination of ultra-relativistic, relativistic and low-energy models for the same run providing both precision and CPU performance. Due to this migration additional capabilities become available. The new developments include relativistic models for bremsstrahlung and e+e- pair production, models of multiple and single scattering, hadron/ion ionization, microdosimetry for very low energies and also improvements in existing Geant4 models. In parallel, validation suites and benchmarks have been intensively developed

    Geant4 Developments and Applications

    Get PDF
    Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Its functionality and modeling capabilities continue to be extended, while its performance is enhanced. An overview of recent developments in diverse areas of the toolkit is presented. These include performance optimization for complex setups; improvements for the propagation in fields; new options for event biasing; and additions and improvements in geometry, physics processes and interactive capabilities

    B. Sprachwissenschaft.

    No full text
    corecore