79 research outputs found

    The Spectrum of Scarring in Craniofacial Wound Repair

    Get PDF
    Fibrosis is intimately linked to wound healing and is one of the largest causes of wound-related morbidity. While scar formation is the normal and inevitable outcome of adult mammalian cutaneous wound healing, scarring varies widely between different anatomical sites. The spectrum of craniofacial wound healing spans a particularly diverse range of outcomes. While most craniofacial wounds heal by scarring, which can be functionally and aesthetically devastating, healing of the oral mucosa represents a rare example of nearly scarless postnatal healing in humans. In this review, we describe the typical wound healing process in both skin and the oral cavity. We present clinical correlates and current therapies and discuss the current state of research into mechanisms of scarless healing, toward the ultimate goal of achieving scarless adult skin healing

    Artificial Intelligence-based methods in head and neck cancer diagnosis : an overview

    Get PDF
    Background This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis. Methods Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009–2020). No restrictions were placed on the AI/ML method or imaging modality used. Results In total, 32 articles were identified. HNC sites included oral cavity (n = 16), nasopharynx (n = 3), oropharynx (n = 3), larynx (n = 2), salivary glands (n = 2), sinonasal (n = 1) and in five studies multiple sites were studied. Imaging modalities included histological (n = 9), radiological (n = 8), hyperspectral (n = 6), endoscopic/clinical (n = 5), infrared thermal (n = 1) and optical (n = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%). Conclusions There is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice

    Healing wounds without scarring

    No full text

    Bridge-splitting and ring-opening reaction of palladium(II) arylazooximates

    No full text
    This article does not have an abstract

    Reaction of (μ-Oxo)diiron(III) Core with CO 2

    No full text
    • …
    corecore