43 research outputs found

    Enterohemorrhagic Escherichia coli O157∶H7 Gene Expression Profiling in Response to Growth in the Presence of Host Epithelia

    Get PDF
    BACKGROUND: The pathogenesis of enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection is attributed to virulence factors encoded on multiple pathogenicity islands. Previous studies have shown that EHEC O157:H7 modulates host cell signal transduction cascades, independent of toxins and rearrangement of the cytoskeleton. However, the virulence factors and mechanisms responsible for EHEC-mediated subversion of signal transduction remain to be determined. Therefore, the purpose of this study was to first identify differentially regulated genes in response to EHEC O157:H7 grown in the presence of epithelial cells, compared to growth in the absence of epithelial cells (that is, growth in minimal essential tissue culture medium alone, minimal essential tissue culture medium in the presence of 5% CO(2), and Penassay broth alone) and, second, to identify EHEC virulence factors responsible for pathogen modulation of host cell signal transduction. METHODOLOGY/PRINCIPAL FINDINGS: Overnight cultures of EHEC O157:H7 were incubated for 6 hr at 37 degrees C in the presence or absence of confluent epithelial (HEp-2) cells. Total RNA was then extracted and used for microarray analyses (Affymetrix E. coli Genome 2.0 gene chips). Relative to bacteria grown in each of the other conditions, EHEC O157:H7 cultured in the presence of cultured epithelial cells displayed a distinct gene-expression profile. A 2.0-fold increase in the expression of 71 genes and a 2.0-fold decrease in expression of 60 other genes were identified in EHEC O157:H7 grown in the presence of epithelial cells, compared to bacteria grown in media alone. CONCLUSION/SIGNIFICANCE: Microarray analyses and gene deletion identified a protease on O-island 50, gene Z1787, as a potential virulence factor responsible for mediating EHEC inhibition of the interferon (IFN)-gamma-Jak1,2-STAT-1 signal transduction cascade. Up-regulated genes provide novel targets for use in developing strategies to interrupt the infectious process

    Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other E. coli pathotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adherent and invasive <it>Escherichia coli </it>(AIEC) are commonly found in ileal lesions of Crohn's Disease (CD) patients, where they adhere to intestinal epithelial cells and invade into and survive in epithelial cells and macrophages, thereby gaining access to a typically restricted host niche. Colonization leads to strong inflammatory responses in the gut suggesting that AIEC could play a role in CD immunopathology. Despite extensive investigation, the genetic determinants accounting for the AIEC phenotype remain poorly defined. To address this, we present the complete genome sequence of an AIEC, revealing the genetic blueprint for this disease-associated <it>E. coli </it>pathotype.</p> <p>Results</p> <p>We sequenced the complete genome of <it>E. coli </it>NRG857c (O83:H1), a clinical isolate of AIEC from the ileum of a Crohn's Disease patient. Our sequence data confirmed a phylogenetic linkage between AIEC and extraintestinal pathogenic <it>E. coli </it>causing urinary tract infections and neonatal meningitis. The comparison of the NRG857c AIEC genome with other pathogenic and commensal <it>E. coli </it>allowed for the identification of unique genetic features of the AIEC pathotype, including 41 genomic islands, and unique genes that are found only in strains exhibiting the adherent and invasive phenotype.</p> <p>Conclusions</p> <p>Up to now, the virulence-like features associated with AIEC are detectable only phenotypically. AIEC genome sequence data will facilitate the identification of genetic determinants implicated in invasion and intracellular growth, as well as enable functional genomic studies of AIEC gene expression during health and disease.</p

    Addressing climate change with behavioral science: a global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors

    Identification of Four Fimbria-Encoding Genomic Islands That Are Highly Specific for Verocytotoxin-Producing Escherichia coli Serotype O157 Strains

    No full text
    Verocytotoxin-producing Escherichia coli causes zoonotic food- or waterborne infection that may be associated with massive outbreaks and with the serious complication of hemolytic uremic syndrome (HUS). Serotypes O157:H7 and O157:NM are more commonly associated with HUS and outbreaks than other serotypes, such as O26:H11. To determine whether a genetic basis exists for why serotype O157:H7/NM causes HUS and outbreaks more often than other serotypes, such as O26:H11, we conducted suppression subtractive hybridization (SSH) between the genomes of the sequenced O157:H7 strain EDL933 and CL1, a clinical serotype O26:H11 isolate. Genes from four EDL933 fimbria-encoding genomic O islands (OIs) (OI-1, -47, -141, and -154) were identified in the SSH library. OI-47 encodes several additional putative virulence factors, including secreted and signaling proteins, a hemolysin locus, a lipoprotein, an ABC transport system, and a lipid biosynthesis locus. The distribution of the OIs was investigated by PCR and Southern hybridization (when PCR was negative) with 69 VTEC strains belonging to 39 different serotypes corresponding to 5 seropathotypes that differ in their disease and epidemic potential. The four OIs described here were distributed almost exclusively in serotypes O157:H7 and O157:NM, which indicates that they may be associated with the ability of these strains to colonize human and/or animal intestinal tracts and to cause epidemic and serious disease more frequently than other serotypes. The occurrence of the four OIs in enteropathogenic E. coli O55:H7 strains is consistent with their vertical inheritance by VTEC O157:H7/NM from this clonally related ancestor

    Risk perceptions, attitudes, and knowledge of chikungunya among the public and health professionals: a systematic review

    No full text
    Abstract Background Recently, attention to chikungunya has increased due to its spread into previously non-endemic areas. Since there is no available treatment or vaccine, most intervention strategies focus on mosquito bite prevention and mosquito control, which require community involvement to be successful. Thus, our objective was to systematically review the global primary literature on the risk perceptions, attitudes, and knowledge of chikungunya among the public and health professionals to inform future research and improve our understanding on which intervention strategies are likely to be successful. Methods Potentially relevant articles were identified through a standardized systematic review (SR) process consisting of the following steps: comprehensive search strategy in seven databases (Scopus, PubMed, CINAHL, CAB, LILACS, Agricola, and Cochrane) and a grey literature search of public health organizations, relevance screening, risk of bias assessment, and data extraction. Two independent reviewers performed each step. Reporting of this SR follows PRISMA reporting guidelines. Results Thirty-seven relevant articles were identified. The majority of the articles were published since 2011 (83.8%) and reported on studies conducted in Asia (48.7%) and the Indian Ocean Islands (24.3%). The results were separated into four categories: general knowledge and perceptions on chikungunya; perceptions on the risk and severity of chikungunya; knowledge of chikungunya-harboring vectors and transmission; and knowledge, perceptions, and attitudes on mitigation practices. Overall, the systematic review found that risk perceptions, attitudes, and knowledge of chikungunya among the public and health professionals vary across populations and countries and knowledge is higher in areas that have experienced an outbreak. Conclusion The results suggest that most of the affected populations in this study do not understand mosquito borne diseases or chikungunya and are therefore less likely to protect themselves from mosquito bites. While more research is required to improve the generalizability of this dataset, it appears that a lack of knowledge is an important barrier for motivating community level interventions and personal protection against mosquitoes

    Evidence for a Hybrid Genomic Island in Verocytotoxin-Producing Escherichia coli CL3 (Serotype O113:H21) Containing Segments of EDL933 (Serotype O157:H7) O Islands 122 and 48

    No full text
    Genomic O island 122 (OI-122) of the verocytotoxin-producing Escherichia coli (VTEC) strain EDL933 contains four putative virulence genes, Z4321, Z4326, Z4332, and Z4333. However, strain CL3 (serotype O113:H21) contains only Z4321, not the other three genes. To determine whether Z4321 is part of a different genomic island in CL3, a region of 27,293 bp up- and downstream of Z4321 was sequenced and found to contain elements of two different EDL933 genomic islands (OI-48 and OI-122) and a Yersinia pestis-like hemolysin/adhesin gene cluster. The region contained OI-48 genes Z1635, Z1636, and Z1637 at the left terminus and Z1641, Z1642, Z1643, and Z1644 at the right. The middle portion consisted of OI-48 gene Z1640, which was separated into three fragments by genomic segments including the Y. pestis cluster and EDL933 OI-122 genes Z4322, Z4321, and Z4318. In a PCR investigation of 36 VTEC strains of different serotypes, intact Z1640 was present in strains of serotypes O157:H7, O26:H11, O103:H2, O111:NM, and O145:NM, which are associated with hemolytic uremic syndrome and outbreaks. In contrast, fragmented Z1640 was seen in strains of nonepidemic serotypes, such as O91:H21 and O113:H21, and in animal serotypes that have not been associated with human disease, indicating that Z1640 might be a virulence gene

    A systematic review of individual and community mitigation measures for prevention and control of chikungunya virus.

    No full text
    BACKGROUND:Chikungunya is a mosquito-borne virus transmitted by mosquitoes from the Aedes genus. The virus, endemic to parts of Asia and Africa, has recently undergone an emergence in other parts of the world where it was previously not found including Indian Ocean Islands, Europe, the Western Pacific and the Americas. There is no vaccine against chikungunya virus, which means that prevention and mitigation rely on personal protective measures and community level interventions including vector control. METHODOLOGY/PRINCIPAL FINDINGS:A systematic review (SR) was conducted to summarize the literature on individual and community mitigation and control measures and their effectiveness. From a scoping review of the global literature on chikungunya, there were 91 articles that investigated mitigation or control strategies identified at the individual or community level. Of these, 81 were confirmed as relevant and included in this SR. The majority of the research was published since 2010 (76.5%) and was conducted in Asia (39.5%). Cross sectional studies were the most common study design (36.6%). Mitigation measures were placed into six categories: behavioural protective measures, insecticide use, public education, control of blood and blood products, biological vector control and quarantine of infected individuals. The effectiveness of various mitigation measures was rarely evaluated and outcomes were rarely quantitative, making it difficult to summarize results across studies and between mitigation strategies. Meta-analysis of the proportion of individuals engaging in various mitigation measures indicates habitat removal is the most common measure used, which may demonstrate the effectiveness of public education campaigns aimed at reducing standing water. CONCLUSIONS/SIGNIFICANCE:Further research with appropriate and consistent outcome measurements are required in order to determine which mitigation measures, or combination of mitigation measures, are the most effective at protecting against exposure to chikungunya virus

    Legislative Documents

    No full text
    Also, variously referred to as: Senate bills; Senate documents; Senate legislative documents; legislative documents; and General Court documents

    Zoonotic Babesia: A scoping review of the global evidence.

    No full text
    BACKGROUND:Babesiosis is a parasitic vector-borne disease of increasing public health importance. Since the first human case was reported in 1957, zoonotic species have been reported on nearly every continent. Zoonotic Babesia is vectored by Ixodes ticks and is commonly transmitted in North America by Ixodes scapularis, the tick species responsible for transmitting the pathogens that also cause Lyme disease, Powassan virus, and anaplasmosis in humans. Predicted climate change is expected to impact the spread of vectors, which is likely to affect the distribution of vector-borne diseases including human babesiosis. METHODS:A scoping review has been executed to characterize the global evidence on zoonotic babesiosis. Articles were compiled through a comprehensive search of relevant bibliographic databases and targeted government websites. Two reviewers screened titles and abstracts for relevance and characterized full-text articles using a relevance screening and data characterization tool developed a priori. RESULTS:This review included 1394 articles relevant to human babesiosis and/or zoonotic Babesia species. The main zoonotic species were B. microti, B. divergens, B. duncani and B. venatorum. Articles described a variety of study designs used to study babesiosis in humans and/or zoonotic Babesia species in vectors, animal hosts, and in vitro cell cultures. Topics of study included: pathogenesis (680 articles), epidemiology (480), parasite characterization (243), diagnostic test accuracy (98), mitigation (94), treatment (65), transmission (54), surveillance (29), economic analysis (7), and societal knowledge (1). No articles reported predictive models investigating the impact of climate change on Babesia species. CONCLUSION:Knowledge gaps in the current evidence include research on the economic burden associated with babesiosis, societal knowledge studies, surveillance of Babesia species in vectors and animal hosts, and predictive models on the impact of climate change. The scoping review results describe the current knowledge and knowledge gaps on zoonotic Babesia which can be used to inform future policy and decision making
    corecore