28 research outputs found

    Fast and effective mitochondrial delivery of omega-Rhodamine-B-polysulfobetaine-PEG copolymers

    Get PDF
    Mitochondrial targeting and entry, two crucial steps in fighting severe diseases resulting from mitochondria dysfunction, pose important challenges in current nanomedicine. Cell-penetrating peptides or targeting groups, such as Rhodamine-B (Rho), are known to localize in mitochondria, but little is known on how to enhance their effectiveness through structural properties of polymeric carriers. To address this issue, we prepared 8 copolymers of 3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate and poly(ethyleneglycol) methacrylate, p(DMAPS-ran-PEGMA) (molecular weight, 18.0 <M-n <74.0 kg/mol) with two different endgroups. We labeled them with Rho groups attached along the chain or on one of the two endgroups (alpha or omega). From studies by flow cytometry and confocal fluorescence microscopy of the copolymers internalization in HeLa cells in the absence and presence of pharmacological inhibitors, we established that the polymers cross the cell membrane foremost by translocation and also by endocytosis, primarily clathrin-dependent endocytosis. The most effective mitochondrial entry was achieved by copolymers of M-n <30.0 kg/mol, lightly grafted with PEG chains (<5 mol %) labeled with Rho in the omega-position. Our findings may be generalized to the uptake and mitochondrial targeting of prodrugs and imaging agents with a similar polymeric scaffold.Peer reviewe

    Emerin plays a crucial role in nuclear invagination and in the nuclear calcium transient.

    Get PDF
    Alteration of the nuclear Ca2+ transient is an early event in cardiac remodeling. Regulation of the nuclear Ca2+ transient is partly independent of the cytosolic Ca2+ transient in cardiomyocytes. One nuclear membrane protein, emerin, is encoded by EMD, and an EMD mutation causes Emery-Dreifuss muscular dystrophy (EDMD). It remains unclear whether emerin is involved in nuclear Ca2+ homeostasis. The aim of this study is to elucidate the role of emerin in rat cardiomyocytes by means of hypertrophic stimuli and in EDMD induced pluripotent stem (iPS) cell-derived cardiomyocytes in terms of nuclear structure and the Ca2+ transient. The cardiac hypertrophic stimuli increased the nuclear area, decreased nuclear invagination, and increased the half-decay time of the nuclear Ca2+ transient in cardiomyocytes. Emd knockdown cardiomyocytes showed similar properties after hypertrophic stimuli. The EDMD-iPS cell-derived cardiomyocytes showed increased nuclear area, decreased nuclear invagination, and increased half-decay time of the nuclear Ca2+ transient. An autopsied heart from a patient with EDMD also showed increased nuclear area and decreased nuclear invagination. These data suggest that Emerin plays a crucial role in nuclear structure and in the nuclear Ca2+ transient. Thus, emerin and the nuclear Ca2+ transient are possible therapeutic targets in heart failure and EDMD. © The Author(s) 2017

    Hayabusa2’s superior solar conjunction mission operations: planning and post-operation results

    Get PDF
    Abstract In late 2018, the asteroid Ryugu was in the Sun’s shadow during the superior solar conjunction phase. As the Sun-Earth-Ryugu angle decreased to below 3°, the Hayabusa2 spacecraft experienced 21 days of planned blackout in the Earth-probe communication link. This was the first time a spacecraft had experienced solar conjunction while hovering around a minor body. For the safety of the spacecraft, a low energy transfer trajectory named Ayu was designed in the Hill reference frame to increase its altitude from 20 to 110 km. The trajectory was planned with the newly developed optNEAR tool and validated with real time data. This article shows the results of the conjunction operation, from planning to flight data.</jats:p

    Efficacy of Quinolones against Secondary Pneumococcal Pneumonia after Influenza Virus Infection in Mice

    No full text
    We established a mouse model of secondary pneumococcal pneumonia after influenza virus infection and investigated the efficacy of several quinolones against pneumonia in this model. Gatifloxacin exhibited the highest efficacy among the quinolones examined and is probably useful for the treatment of secondary bacterial pneumonia

    Contribution of the 8-Methoxy Group to the Activity of Gatifloxacin against Type II Topoisomerases of Streptococcus pneumoniae

    No full text
    The inhibitory activities (50% inhibitory concentrations [IC(50)s]) of gatifloxacin and other quinolones against both DNA gyrase and topoisomerase IV of the wild-type Streptococcus pneumoniae IID553 were determined. The IC(50)s of 10 compounds ranged from 4.28 to 582 μg/ml against DNA gyrase and from 1.90 to 35.2 μg/ml against topoisomerase IV. The inhibitory activity against DNA gyrase was more varied than that against topoisomerase IV among fluoroquinolones. The IC(50)s for DNA gyrase of the 8-methoxy quinolones gatifloxacin and AM-1147 were approximately seven times lower than those of their 8-H counterparts AM-1121 and ciprofloxacin, whereas the IC(50)s for topoisomerase IV were 1.5 times lower. Moreover, the IC(50) ratios (IC(50) for DNA gyrase/IC(50) for topoisomerase IV) of gatifloxacin, AM-1147, and moxifloxacin, which possess 8-methoxy groups, were almost the same. The 8-methoxy quinolones showed higher antibacterial activity and less mutant selectivity against IID553 than their 8-H counterparts. These results suggest that the 8-methoxy group enhances both target inhibition, especially for DNA gyrase, leading to potent antipneumococcal activity and dual inhibition against both DNA gyrase and topoisomerase IV in the bacterial cell

    Cultivation of Neisseria gonorrhoeae in Liquid Media and Determination of Its In Vitro Susceptibilities to Quinolones

    No full text
    The cultivation of Neisseria gonorrhoeae by use of fastidious broth (FB) was evaluated. FB was found to be able to support the growth of all N. gonorrhoeae strains tested in this study without a rapid decrease in the viable count after exponential growth. After 24 h of incubation at 35°C with 5% CO(2), viable counts of all strains reached over 10(8) CFU/ml in FB. Similar growth of the wild-type strain and its target-altered quinolone-resistant derivatives was observed. The susceptibilities of laboratory-adapted strains and clinical isolates to quinolones were tested by the microdilution method using FB. The MICs determined by microdilution were not significantly different from those determined by the agar dilution method recommended by the CLSI (formerly National Committee for Clinical Laboratory Standards). Moreover, the concentration-dependent time-kill of quinolones such as gatifloxacin and ciprofloxacin was observed in FB. At 2 to 4 times the MIC, gatifloxacin and ciprofloxacin were predominantly bactericidal against N. gonorrhoeae WHO A. At the MIC, the activities of both quinolones ranged from bactericidal to bacteriostatic. At 0.25 to 0.5 times the MIC, gonococcal growth was comparable to that of the growth control. These results suggest that the cultivation of N. gonorrhoeae by use of FB may be useful for evaluation of the antibacterial effects of quinolones
    corecore