7 research outputs found

    Safety profile of a multi-antigenic DNA vaccine against hepatitis C virus

    Get PDF
    Despite direct acting antivirals (DAAs) curing >95% of individuals infected with hepatitis C (HCV), in order to achieve the World Health Organization HCV Global Elimination Goals by 2030 there are still major challenges that need to be overcome. DAAs alone are unlikely to eliminate HCV in the absence of a vaccine that can limit viral transmission. Consequently, a prophylactic HCV vaccine is necessary to relieve the worldwide burden of HCV disease. DNA vaccines are a promising vaccine platform due to their commercial viability and ability to elicit robust T-cell-mediated immunity (CMI). We have developed a novel cytolytic DNA vaccine that encodes non-structural HCV proteins and a truncated mouse perforin (PRF), which is more immunogenic than the respective canonical DNA vaccine lacking PRF. Initially we assessed the ability of the HCV pNS3-PRF and pNS4/5-PRF DNA vaccines to elicit robust long-term CMI without any adverse side-effects in mice. Interferon-γ (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay was used to evaluate CMI against NS3, NS4 and NS5B in a dose-dependent manner. This analysis showed a dose-dependent bell-curve of HCV-specific responses in vaccinated animals. We then thoroughly examined the effects associated with reactogenicity of cytolytic DNA vaccination with the multi-antigenic HCV DNA vaccine (pNS3/4/5B). Hematological, biochemical and histological studies were performed in male Sprague Dawley rats with a relative vaccine dose 10–20-fold higher than the proposed dose in Phase I clinical studies. The vaccine was well tolerated, and no toxicity was observed. Thus, the cytolytic multi-antigenic DNA vaccine is safe and elicits broad memory CMI.Jason Gummow, Makutiro G. Masavuli, Zelalem A. Mekonnen, Yanrui Li, Danushka K. Wijesundara, Ashish C. Shrestha, Ilia Voskoboinik, Eric J. Gowans and Branka Grubor-Bau

    Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection

    No full text
    BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious respiratory virus which is responsible for the coronavirus disease 2019 (COVID-19) pandemic. It is increasingly clear that recovered individuals, even those who had mild COVID-19, can suffer from persistent symptoms for many months after infection, a condition referred to as "long COVID", post-acute sequelae of COVID-19 (PASC), post-acute COVID-19 syndrome, or post COVID-19 condition. However, despite the plethora of research on COVID-19, relatively little is known about the molecular underpinnings of these long-term effects.MethodsWe have undertaken an integrated analysis of immune responses in blood at a transcriptional, cellular, and serological level at 12, 16, and 24 weeks post-infection (wpi) in 69 patients recovering from mild, moderate, severe, or critical COVID-19 in comparison to healthy uninfected controls. Twenty-one of these patients were referred to a long COVID clinic and > 50% reported ongoing symptoms more than 6 months post-infection.ResultsAnti-Spike and anti-RBD IgG responses were largely stable up to 24 wpi and correlated with disease severity. Deep immunophenotyping revealed significant differences in multiple innate (NK cells, LD neutrophils, CXCR3+ monocytes) and adaptive immune populations (T helper, T follicular helper, and regulatory T cells) in convalescent individuals compared to healthy controls, which were most strongly evident at 12 and 16 wpi. RNA sequencing revealed significant perturbations to gene expression in COVID-19 convalescents until at least 6 months post-infection. We also uncovered significant differences in the transcriptome at 24 wpi of convalescents who were referred to a long COVID clinic compared to those who were not.ConclusionsVariation in the rate of recovery from infection at a cellular and transcriptional level may explain the persistence of symptoms associated with long COVID in some individuals

    SARS-CoV-2 Omicron variant escapes neutralizing antibodies and T cell responses more efficiently than other variants in mild COVID-19 convalescents.

    No full text
    Coronavirus disease 2019 (COVID-19) convalescents living in regions with low vaccination rates rely on post-infection immunity for protection against re-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluate humoral and T cell immunity against five variants of concern (VOCs) in mild-COVID-19 convalescents at 12 months after infection with ancestral virus. In this cohort, ancestral, receptor-binding domain (RBD)-specific antibody and circulating memory B cell levels are conserved in most individuals, and yet serum neutralization against live B.1.1.529 (Omicron) is completely abrogated and significantly reduced for other VOCs. Likewise, ancestral SARS-CoV-2-specific memory T cell frequencies are maintained in >50% of convalescents, but the cytokine response in these cells to mutated spike epitopes corresponding to B.1.1.529 and B.1.351 (Beta) VOCs were impaired. These results indicate that increased antigen variability in VOCs impairs humoral and spike-specific T cell immunity post-infection, strongly suggesting that COVID-19 convalescents are vulnerable and at risk of re-infection with VOCs, thus stressing the importance of vaccination programs

    Hepatitis C virus vaccine design: focus on the humoral immune response

    No full text
    corecore