1,415 research outputs found

    Solving cosmological problem in universal extra dimension models by introducing Dirac neutrino

    Get PDF
    Universal extra dimension (UED) models with right-handed neutrinos are studied. The introduction of the neutrinos makes us possible not only to describe Dirac neutrino masses but also to solve the cosmological problem called the KK graviton problem. This problem is essentially caused by the late time decay of a KK photon into a KK graviton and a photon, and it distorts the spectrum of the cosmic microwave background or the diffuse photon. We point out that, once we introduce right-handed neutrinos to UED models, the KK photon decays dominantly into neutrinos and does not emit a photon. We also discuss sub-dominant modes with a photon in the decay quantitatively, and show that their branching ratios are so small that the spectra are not distorted.Comment: Some discussions are added

    The neutrino masses and the change of allowed parameter region in universal extra dimension models

    Full text link
    Relic abundance of dark matter is investigated in the framework of universal extra dimension models with right-handed neutrinos. These models are free from the serious Kaluza-Klein (KK) graviton problem that the original universal extra dimension model possesses. The first KK particle of the right-handed neutrino is a candidate for dark matter in this framework. When ordinary neutrino masses are large enough such as the degenerate mass spectrum case, the dark matter relic abundance can change significantly. The scale of the extra dimension consistent with cosmological observations can be 500 GeV in the minimal setup of universal extra dimension models with right-handed neutrinos.Comment: 3 pages, to appear in the conference proceedings of TAUP 200

    Measurements of Antenna Surface for Millimeter-Wave Space Radio Telescope

    Full text link
    In the construction of a space radio telescope, it is essential to use materials with a low noise factor and high mechanical robustness for the antenna surface. We present the results of measurements of the reflection performance of two candidates for antenna surface materials for use in a radio telescope installed in a new millimeter-wave astronomical satellite, ASTRO-G. To estimate the amount of degradation caused by fluctuations in the thermal environment in the projected orbit of the satellite, a thermal cycle test was carried out for two candidates, namely, copper foil carbon fiber reinforced plastic (CFRP) and aluminum-coated CFRP. At certain points during the thermal cycle test, the reflection loss of the surfaces was measured precisely by using a radiometer in the 41-45 GHz band. In both candidates, cracks appeared on the surface after the thermal cycle test, where the number density of the cracks increased as the thermal cycle progressed. The reflection loss also increased in proportion to the number density of the cracks. Nevertheless, the loss of the copper foil surface met the requirements of ASTRO-G at the end of the equivalent life, whereas that of the aluminum-coated surface exceeded the maximal value in the requirement even before the end of the cycle.Comment: 11 pages, 6 figures, accepted for publication in PAS

    Recent progress in silica aerogel Cherenkov radiator

    Get PDF
    In this paper, we present recent progress in the development of hydrophobic silica aerogel as a Cherenkov radiator. In addition to the conventional method, the recently developed pin-drying method for producing high-refractive-index aerogels with high transparency was studied in detail. Optical qualities and large tile handling for crack-free aerogels were investigated. Sufficient photons were detected from high-performance aerogels in a beam test.Comment: Proceedings of 2nd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2011), to be published in Physics Procedia, 8 pages, 7 figure
    corecore