136 research outputs found

    Classification of Du Val del Pezzo surfaces of Picard rank one in positive characteristic

    Full text link
    In this paper, we classify Du Val del Pezzo surfaces of Picard rank one in positive characteristic. We also show that if a Du Val del Pezzo surface is Frobenius split, then a general anti-canonical member is smooth. Furthermore, in characteristic two, it is an ordinary elliptic curve.Comment: 18 pages, this is an extended version of Sections 7 and 8 in arXiv:2008.07700v

    Entropy and Barrier-Hopping Determine Conformational Viscoelasticity in Single Biomolecules

    Get PDF
    Biological macromolecules have complex and non-trivial energy landscapes, endowing them a unique conformational adaptability and diversity in function. Hence, understanding the processes of elasticity and dissipation at the nanoscale is important to molecular biology and also emerging fields such as nanotechnology. Here we analyse single molecule fluctuations in an atomic force microscope (AFM) experiment using a generic model of biopolymer viscoelasticity that importantly includes sources of local `internal' conformational dissipation. Comparing two biopolymers, dextran and cellulose, polysaccharides with and without the well-known `chair-to-boat' transition, reveals a signature of this simple conformational change as minima in both the elasticity and internal friction around a characteristic force. A calculation of two-state populations dynamics offers a simple explanation in terms of an elasticity driven by the entropy, and friction by barrier-controlled hopping, of populations on a landscape. The microscopic model, allows quantitative mapping of features of the energy landscape, revealing unexpectedly slow dynamics, suggestive of an underlying roughness to the free energy.Comment: 25 pages, 7 figures, naturemag.bst, modified nature.cls (naturemodified.cls

    Ultra‐Narrowband Blue Multi‐Resonance Thermally Activated Delayed Fluorescence Materials

    Get PDF
    Ultra-narrowband blue multi-resonance-induced thermally activated delayed fluorescence (MR-TADF) materials (V-DABNA and V-DABNA-F), consisting of three DABNA subunits possessing phenyl or 2, 6-difluorophenyl substituents on the peripheral nitrogen atoms are synthesized by one-shot triple borylation. Benefiting from the inductive effect of fluorine atoms, the emission maximum of V-DABNA-F (464 nm) is blueshifted from that of the parent V-DABNA (481 nm), while maintaining a small full width at half maximum (FWHM, 16 nm) and a high rate constant for reverse intersystem crossing (6.5 × 10⁔ s⁻Âč). The organic light-emitting diodes (OLEDs) using V-DABNA and V-DABNA-F as emitters are fabricated by vapor deposition and exhibit blue emission at 483 and 468 nm with small FWHMs of 17 and 15 nm, corresponding to Commission Internationale d’Éclairage coordinates of (0.09, 0.27) and (0.12, 0.10), respectively. Both devices achieve high external quantum efficiencies of 26.2% and 26.6% at the maximum with minimum efficiency roll-offs of 0.9% and 3.2%, respectively, even at 1000 cd m⁻ÂČ, which are record-setting values for blue MR-TADF OLEDs

    Discovery of a novel restriction endonuclease by genome comparison and application of a wheat-germ-based cell-free translation assay: PabI (5â€Č-GTA/C) from the hyperthermophilic archaeon Pyrococcus abyssi

    Get PDF
    To search for restriction endonucleases, we used a novel plant-based cell-free translation procedure that bypasses the toxicity of these enzymes. To identify candidate genes, the related genomes of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii were compared. In line with the selfish mobile gene hypothesis for restriction–modification systems, apparent genome rearrangement around putative restriction genes served as a selecting criterion. Several candidate restriction genes were identified and then amplified in such a way that they were removed from their own translation signal. During their cloning into a plasmid, the genes became connected with a plant translation signal. After in vitro transcription by T7 RNA polymerase, the mRNAs were separated from the template DNA and translated in a wheat-germ-based cell-free protein synthesis system. The resulting solution could be directly assayed for restriction activity. We identified two deoxyribonucleases. The novel enzyme was denoted as PabI, purified and found to recognize 5â€Č-GTAC and leave a 3â€Č-TA overhang (5â€Č-GTA/C), a novel restriction enzyme-generated terminus. PabI is active up to 90°C and optimally active at a pH of around 6 and in NaCl concentrations ranging from 100 to 200 mM. We predict that it has a novel 3D structure

    Novel Soft Meals Developed by 3D Printing

    Get PDF
    Recently, 3D printing is being applied to various fields. 3D printing of foods has been developed; however, there are many challenges. To overcome the challenges, we have started a new research group named “Yonezawa Itadakimasu Research Group,” to focus on the development of 3D printing applications for manufacturing food. We have developed Novel jelly foods that are shaped by 3D printed molds. Fused deposition modeling (FDM) 3D printer for food manufacturing makes the 3D printed molds. First step of making 3D printing mold is to print a cast. Then, food grade silicone is poured into the cast to make a mold. This type of 3D printed mold can be used widely, such as making sweets, restaurant menus, and care foods by changing the design depending on the use of application. Secondly, we started to develop 3D food printers. This type of challenge to develop future foods by 3D printing technology may have a major impact on the care food because the looks of foods are important and will be improved by 3D printing

    Oseltamivir Prescription and Regulatory Actions Vis-Ă -Vis Abnormal Behavior Risk in Japan: Drug Utilization Study Using a Nationwide Pharmacy Database

    Get PDF
    BACKGROUND: In March 2007, a regulatory advisory was issued in Japan to restrict oseltamivir use in children aged 10-19 years because of safety concerns over abnormal behavior. The effectiveness and validity of regulatory risk minimization actions remain to be reviewed, despite their significant public health implications. To assess the impact of the regulatory actions on prescribing practices and safety reporting. METHODOLOY/PRINICPAL FINDINGS: In this retrospective review of a nationwide pharmacy database, we analyzed 100,344 dispensation records for oseltamivir and zanamivir for the period from November 2006 to March 2009. The time trend in dispensations for these antiviral agents was presented before and after the regulatory actions, contrasted with intensity of media coverage and the numbers of spontaneous adverse reaction reports with regard to antivirals. The 2007 regulatory actions, together with its intense media coverage, reduced oseltamivir dispensation in targeted patients in fiscal year 2008 to 20.4% of that in fiscal year 2006, although influenza activities were comparable between these fiscal years. In contrast, zanamivir dispensation increased approximately nine-fold across all age groups. The number of abnormal behavior reports associated with oseltamivir in children aged 10-19 years decreased from fiscal year 2006 to 2008 (24 to 9 cases); this decline was offset by the increased number of reports of abnormal behavior in children under age 10 (12 to 28 cases). The number of reports associated with zanamivir increased in proportion to increased dispensation of this drug (11 to 114 cases). CONCLUSIONS/SIGNIFICANCE: The 2007 actions effectively reduced oseltamivir prescriptions and the number of reports of abnormal behavior in the targeted group. The observed increase in abnormal behavior reports in oseltamivir patients under age 10 and in zanamivir patients suggests that these patient groups may also be at risk, calling into question the validity of the current discrimination by age and agent (Abstract translation is available in Japanese: Appendix S1)

    Optimizing the calculation of energy landscape parameters from single-molecule protein unfolding experiments

    Get PDF
    Single-molecule force spectroscopy using an atomic force microscope (AFM) can be used to measure the average unfolding force of proteins in a constant velocity experiment. In combination with Monte Carlo simulations and through the application of the Zhurkov-Bell model, information about the parameters describing the underlying unfolding energy landscape of the protein can be obtained. Using this approach, we have completed protein unfolding experiments on the polyprotein (I27) 5 over a range of pulling velocities. In agreement with previous work, we find that the observed number of protein unfolding events observed in each approach-retract cycle varies between one and five, due to the nature of the interactions between the polyprotein, the AFM tip, and the substrate, and there is an unequal unfolding probability distribution. We have developed a Monte Carlo simulation that incorporates the impact of this unequal unfolding probability distribution on the median unfolding force and the calculation of the protein unfolding energy landscape parameters. These results show that while there is a significant, unequal unfolding probability distribution, the unfolding energy landscape parameters obtained from use of the Zhurkov-Bell model are not greatly affected. This result is important because it demonstrates that the minimum acceptance criteria typically used in force extension experiments are justified and do not skew the calculation of the unfolding energy landscape parameters. We further validate this approach by determining the error in the energy landscape parameters for two extreme cases, and we provide suggestions for methods that can be employed to increase the level of accuracy in single-molecule experiments using polyproteins
    • 

    corecore