253 research outputs found

    On correlations and mutual entropy in quantum composed systems

    Get PDF
    We study the correlations of classical and quantum systems from the information theoretical points of view. We analyze a simple measure of correlations based on entropy (such measure was already investigated as the degree of entanglement by Belavkin, Matsuoka and Ohya). Contrary to naive expectation, it is shown that separable state might possesses stronger correlation than an entangled state

    Kinetic Simulations of Neoclassical and Anomalous Transport Processes in Helical Systems

    Get PDF
    Drift kinetic and gyrokinetic theories and simulations are powerful means for quantitative predictions of neoclassical and anomalous transport fluxes in helical systems such as the Large Helical Device (LHD). The δf Monte Carlo particle simulation code, FORTEC-3D, is used to predict radial profiles of the neoclassical particle and heat transport fluxes and the radial electric field in helical systems. The radial electric field profiles in the LHD plasmas are calculated from the ambipolarity condition for the neoclassical particle fluxes obtained by the global simulations using the FORTEC-3D code, in which effects of ion or electron finite orbit widths are included. Gyrokinetic Vlasov simulations using the GKV code verify the theoretical prediction that the neoclassical optimization of helical magnetic configuration enhances the zonal flow generation which leads to the reduction of the turbulent heat diffusivity χi due to the ion temperature gradient (ITG) turbulence. Comparisons between results for the high ion temperature LHD experiment and the gyrokinetic simulations using the GKV-X code show that the χi profile and the poloidal wave number spectrum of the density fluctuation obtained from the simulations are in reasonable agreements with the experimental results. It is predicted theoretically and confirmed by the linear GKV simulations that the E × B rotation due to the background radial electric field Er can enhance the zonal-flow response to a given source. Thus, in helical systems, the turbulent transport is linked to the neoclassical transport through Er which is determined from the ambipolar condition for neoclassical particle fluxes and influences the zonal flow generation leading to reduction of the turbulent transport. In order to investigate the Er effect on the regulation of the turbulent transport by the zonal flow generation, the flux-tube bundle model is proposed as a new method for multiscale gyrokinetic simulations

    Polarization and magnetization in collisional and turbulent transport processes

    Get PDF
    Expressions of polarization and magnetization in magnetically confined plasmas are derived, which include full expansions in the gyroradius to treat effects of both equilibrium and microscopic electromagnetic turbulence. Using the obtained expressions, densities and flows of particles are related to those of gyrocenters. To the first order in the normalized gyroradius expansion, the mean part of the particle flow is given by the sum of the gyrocenter flow and the magnetization flow, which corresponds to the so-called magnetization law in drift kinetics, while the turbulent part contains the polarization flow as well. Collisions make an additional contribution to the second-order particle flow. The mean particle flux across the magnetic surface is of the second-order, and it contains classical, neoclassical, and turbulent transport processes. The Lagrangian variational principle is used to derive the gyrokinetic Poisson and Ampère equations, which properly include mean and turbulent parts so as to be useful for full-f global electromagnetic gyrokinetic simulations. It is found that the second-order Lagrangian term given by the inner product of the turbulent vector potential and the drift velocity consisting of the curvature drift and the ∇B drift should be retained in order for the derived Ampère equation to correctly include the diamagnetic current, which is necessary especially for the full-f high-beta plasma simulations. The turbulent parts of these gyrokinetic Poisson and Ampère equations are confirmed to agree with the results derived from the WKB representation in earlier works

    A case of primary mucosa-associated lymphoid tissue lymphoma of the prostate

    Get PDF
    We report a case of primary mucosa-associated lymphoid tissue (MALT) lymphoma of the prostate. A 67-year-old man presented with urinary obstruction and an elevated prostate-specific antigen (PSA) level. A physical examination revealed mild prostate enlargement and no lymphadenopathy. A needle biopsy and immunohistochemical studies of the prostate were performed, which revealed marginal zone B-cell MALT-type lymphoma. A bone marrow aspiration and biopsy did not show involvement by lymphoma. Magnetic resonance imaging (MRI) of the abdomen and the pelvis revealed no lymphadenopathy or ascites. There was no involvement of other sites by lymphoma. The patient was diagnosed and staged as extranodal marginal zone B-cell MALT-type lymphoma of the prostate, low grade and stage I. The patient received external beam radiation therapy to the prostate with a total dose of 3600cGy in 22 fractions, and became free of disease within the following 15 months

    The Eulerian variational formulation of the gyrokinetic system in general spatial coordinates

    Get PDF
    The Eulerian variational formulation of the gyrokinetic system with electrostatic turbulence is presented in general spatial coordinates by extending our previous work [H. Sugama et al., Phys. Plasmas 25, 102506 (2018)]. The invariance of the Lagrangian of the system under an arbitrary spatial coordinate transformation is used to derive the local momentum balance equation satisfied by the gyrocenter distribution functions and the turbulent potential, which are given as solutions of the governing equations. In the symmetric background magnetic field, the derived local momentum balance equation gives rise to the local momentum conservation law in the direction of symmetry. This derivation is in contrast to the conventional method using the spatial translation in which the asymmetric canonical pressure tensor generally enters the momentum balance equation. In the present study, the variation of the Lagrangian density with respect to the metric tensor is taken to directly obtain the symmetric pressure tensor, which includes the effect of turbulence on the momentum transport. In addition, it is shown in this work how the momentum balance is modified when the collision and/or external source terms are added to the gyrokinetic equation. The results obtained here are considered useful for global gyrokinetic simulations investigating both neoclassical and turbulent transport processes even in general non-axisymmetric toroidal systems

    Development of a Drift-Kinetic Simulation Code for Estimating Collisional Transport Affected by RMPs and Radial Electric Field

    Get PDF
    A drift-kinetic δf simulation code is developed for estimating collisional transport in a quasi-steady state of toroidal plasma affected by resonant magnetic perturbations and radial electric field. In this paper, validity of the code is confirmed through several test calculations. It is found that radial electron flux is reduced by positive radial-electric field, although radial diffusion of electron is strongly affected by chaotic field-lines under an assumption of zero electric field

    Nonlinear functional relation covering near- and far-marginal stability in ion temperature gradient driven turbulence

    Get PDF
    A novel nonlinear functional relation of turbulence potential intensity, zonal flow potential intensity, and ion thermal diffusivity that accurately reproduces nonlinear gyrokinetic simulations of toroidal ion temperature gradient (ITG) driven turbulence is proposed. Applying mathematical optimization techniques to find extremal solutions in high-dimensional parameter space, the optimal regression parameters in the functional form are determined to be valid for both near- and far-marginal regime of the ITG stability including the Dimits-shift. Then, the regression error of ∼5% is accomplished. In addition, it is clarified that the intensity ratio of the zonal flow and turbulence potential intensity is a crucial factor to determine the reproduction accuracy
    • …
    corecore