90 research outputs found

    Analysis of plasmin generation and clot lysis of plasma fibrinogen purified from a heterozygous dysfibrinogenemia, B beta Gly15Cys (Hamamatsu II)

    Get PDF
    This is a non-final version of an article published in final form in Blood Coagulation & Fibrinolysis. 20(8):726-732, December 2009.We found a heterozygous dysfibrinogenemia caused by the substitution of B beta Gly15Cys and designated it fibrinogen Hamamatsu II (H-II). Although the propositus suffered an infarction of the medulla oblongata, other thrombotic risk factors, paradoxical cerebral infarction, and arterial dissection were not found. To determine whether the delayed lysis of fibrin clots or not in the context of the B beta Gly15Cys substitution, we examined the clot lysis and plasmin generation of propositus' fibrinogen. Fibrinogen was purified from the propositus' and normal control plasma by immunoaffinity chromatography and was used for the following experiments: sodium dodecyl sulfate-polyacrylamide gel electrophoresis, fibrin polymerization, scanning electron microscopic observation of fibrin clot and fibers, clot lysis, and tissue-type plasminogen activator-mediated plasminogen activation. The H-II plasma fibrinogen showed the presence of albumin-binding variant forms, a dimeric molecule of variant fibrinogen, and impairment of lateral aggregation during fibrin polymerization. The H-II fibrin clot showed lower density of bundles and thinner diameters of fibers than in the normal fibrin clot. In the clot lysis experiments with overlaid plasmin, H-II fibrin showed a similar lysis period and lysis rate to the normal control. Moreover, plasmin generation from a mixture of thrombin, tissue-type plasminogen activator, plasminogen, and H-II fibrinogen also showed a similar rate to normal fibrinogen. Although the propositus suffered an infarction, the present study did not observe delayed clot lysis, that is, the clot was not resistant to plasmin degradation. Therefore, we did not clarify an association between the B beta Gly15Cys dysfibrinogenemia and arterial thrombosis.ArticleBLOOD COAGULATION & FIBRINOLYSIS. 20(8):726-732 (2009)journal articl

    Heterozygous B beta-chain C-terminal 12 amino acid elongation variant, B beta X462W (Kyoto VI), showed dysfibrinogenemia

    Get PDF
    A heterozygous patient with dysfibrinogenemia with slight bleeding and no thrombotic complications was diagnosed with fibrinogen Kyoto VI (K-VI). To elucidate the genetic mutation(s) and characterize the variant protein, we performed the following experiments and compared with identical and similar variants that have already been reported. The proposita's PCR-amplified DNA was analyzed by sequencing and her purified plasma fibrinogen underwent SDS-PAGE followed by immunoblotting, fibrin polymerization, and scanning electron microscopic observation of fibrin clot and fibers. Sequence analyses showed that K-VI fibrinogen substituted W (TGG) for terminal codon (TAG), resulting in 12 amino acid elongation 462-473 (WSPIRRFLLFCM) in the B beta-chain. Protein analyses indicated that the presence of some albumin-binding variant fibrinogens and a dimeric molecule of variant fibrinogens reduced fibrin polymerization, with a thinner fiber and aberrant fibrin network. These results are almost the same as for the identical variant of Magdeburg, however, different from the similar variant of Osaka VI [ 12 amino acid elongation 462-473 (KSPIRRFLLFCM) in the B beta-chain] in the presence of variant forms and clot structure. We speculate the side-chain difference at 462 residues, W in K-VI, K in Osaka VI, and/or the difference in the presence of disulfide bridged forms of variant fibrinogens, led to the notable difference in the fibrin bundle network. Although a strong evolutional and structural association between B beta-chain and gamma-chain molecules is established, the corresponding recombinant 15 residue elongation variants of the fibrinogen gamma-chain showed reduced assembly and secretion.ArticleBLOOD COAGULATION & FIBRINOLYSIS. 23(1):87-90 (2012)journal articl

    Ran-GTP Is Non-essential to Activate NuMA for Mitotic Spindle-Pole Focusing but Dynamically Polarizes HURP Near Chromosomes

    Get PDF
    Spindle assembly is spatially regulated by a chromosome-derived Ran- GTP gradient. Previous work proposed that Ran-GTP activates spindle assembly factors (SAFs) around chromosomes by dissociating inhibitory importins from SAFs. However, it is unclear whether the Ran-GTP gradient equivalently activates SAFs that localize at distinct spindle regions. In addition, Ran\u27s dual functions in interphase nucleocytoplasmic transport and mitotic spindle assembly have made it difficult to assess its mitotic roles in somatic cells. Here, using auxin-inducible degron technology in human cells, we developed acute mitotic depletion assays to dissect Ran\u27s mitotic roles systematically and separately from its interphase function. In contrast to the prevailing model, we found that the Ran pathway is not essential for spindle assembly activities that occur at sites spatially separated from chromosomes, including activating NuMA for spindle-pole focusing or for targeting TPX2. On the other hand, Ran-GTP is required to localize HURP and HSET specifically at chromosome-proximal regions to set proper spindle length during prometaphase. We demonstrated that Ran-GTP and importin-beta coordinately promote HURP\u27s dynamic microtubule binding-dissociation cycle, which maintains HURP near chromosomes during metaphase. Together, we propose that the Ran pathway acts on spindle assembly independently of its interphase functions in mitotic human cells but does not equivalently regulate all Ran-regulated SAFs. Ran-dependent spindle assembly is likely coupled with additional parallel pathways that activate SAFs distantly located from the chromosomes

    Effects of a high-fat diet on the electrical properties of porcine atria

    Get PDF
    AbstractBackgroundBecause obesity is an important risk factor for atrial fibrillation (AF), we conducted an animal study to examine the effect of a high-fat diet (HFD) on atrial properties and AF inducibility.MethodsTen 8-week-old pigs (weight, 18–23kg) were divided into two groups. For 18 weeks, five pigs were fed a HFD (HFD group) and five were fed a normal diet (control group). Maps of atrial activation and voltages during sinus rhythm were created for all pigs using the EnSite NavX system. Effective refractory period (ERP) and AF inducibility were also determined. When AF was induced, complex fractionated atrial electrogram (CFAE) mapping was performed. At 18 weeks, hearts were removed for comparing the results of histological analysis between the two groups. Body weight, lipid levels, hemodynamics, cardiac structures, and electrophysiological properties were also compared.ResultsTotal cholesterol levels were significantly higher (347 [191–434] vs. 81 [67–88]mg/dL, P=0.0088), and left atrium pressure was higher (34.5 [25.6–39.5] vs. 24.5 [21.3–27.8]mmHg, P=0.0833) in the HFD group than in the control group, although body weight only increased marginally (89 [78–101] vs. 70 [66–91]kg, P=0.3472). ERPs of the pulmonary vein (PV) were shorter (P<0.05) and AF lasted longer in the HFD group than in the control group (80 [45–1350] vs. 22 [3–30]s, P=0.0212). Neither CFAE site distribution nor histopathological characteristics differed between the two groups.ConclusionsThe shorter ERPs for the PV observed in response to the HFD increased vulnerability to AF, and these electrophysiological characteristics may underlie obesity-related AF

    トウニョウビョウ ケア ノ リスク マネージメント

    Get PDF
    The number of diabetics has been increasing in recent years. The diabetics are under varioustreatments, including the improvement of life habit and the medication for diabetes with insulin.Our hospital set a team of diabetic care, which is composed of a diabetic specialist, certified diabeteseducators(CDEs), nurses, dietricians and pharmacists. This team takes great care of the diabetics.For medical safety measures, the department of risk management was organized in our hospital.The department investigated the cases of Hiyari-Hatto within 1 year and 3 months, from 2005to 2006, and found that 3% of them was the diabetic case, which was caused by the nurses exceptCDEs. Therefore the department made the manual of diabetic therapy in cooperation with theCDEs. All the staffs in our hospital were educated by the seminars according to the manual. Theknowledge about the diabetic therapy proved to be mostly accurate one year after the last seminar.For the improvement of medical safety, the department of risk management helps the CDEswith holding the educational seminars by giving the informations after analyzing the cases of Hiyari-Hatto and the questionnaires following the seminars

    Paracrine IL-33 Stimulation Enhances Lipopolysaccharide-Mediated Macrophage Activation

    Get PDF
    BACKGROUND: IL-33, a member of the IL-1 family of cytokines, provokes Th2-type inflammation accompanied by accumulation of eosinophils through IL-33R, which consists of ST2 and IL-1RAcP. We previously demonstrated that macrophages produce IL-33 in response to LPS. Some immune responses were shown to differ between ST2-deficient mice and soluble ST2-Fc fusion protein-treated mice. Even in anti-ST2 antibody (Ab)-treated mice, the phenotypes differed between distinct Ab clones, because the characterization of such Abs (i.e., depletion, agonistic or blocking Abs) was unclear in some cases. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the precise role of IL-33, we newly generated neutralizing monoclonal Abs for IL-33. Exogenous IL-33 potentiated LPS-mediated cytokine production by macrophages. That LPS-mediated cytokine production by macrophages was suppressed by inhibition of endogenous IL-33 by the anti-IL-33 neutralizing mAbs. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that LPS-mediated macrophage activation is accelerated by macrophage-derived paracrine IL-33 stimulation

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo
    corecore